Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(P\left(0\right)=a_0=2^{10}\)
\(P\left(1\right)=a_0+a_1+a_2+...+a_{30}=\left(2+1+3\right)^{10}=6^{10}\)
Suy ra : \(S=a_1+a_2+...+a_{30}=P\left(1\right)-P\left(0\right)=6^{10}-2^{10}\)
a) A(x) = -4x5 - x3 + 4x2 + 5x + 9 + 4x5 - 6x2 - 2
= - x3 - 2x2 + 5x + 7
B(x) = -3x4 - 2x3 + 10x2 - 8x + 5x3 - 7 - 2x3 + 8x
= - 3x4 + x3 + 10x2 - 7
b) P(x) = A(x) + B(x)
= - x3 - 2x2 + 5x + 7 - 3x4 + x3 + 10x2 - 7
= - 3x4 + 8x2 + 5x
Q(x) = A(x) - B(x)
= - x3 - 2x2 + 5x + 7 - (- 3x4 + x3 + 10x2 - 7)
= - x3 - 2x2 + 5x + 7 + 3x4 - x3 - 10x2 + 7
= 3x4 - 2x3 - 12x2 + 5x + 14
c) Thế x = -1 vào đa thức P(x), ta có:
P(-1) = - 3.(-1)4 + 8.(-1)2 + 5.(-1) = -3 + 8 + (-5) = 0
Vậy x = -1 là nghiệm của đa thức P(x).
Sau khi bỏ dấu ngoặc(thực hiện phép nhân)ta sẽ được đa thức :
\(P\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\) với \(n=2\left(2008+2009\right)=8034\)
Thay x = 1 thì giá trị đa thức là P(1) đúng bằng tổng các hệ số \(a_n+a_{n-1}+...+a_1+a_0\)
Ta có : \(P\left(1\right)=\left(8\cdot1^2+3\cdot1-10\right)^{2008}\cdot\left(8\cdot1^2+1-10\right)^{2009}=-1\)
Vậy tổng của hệ số của đa thức là -1
a)
A(x)=(-4x5+4x5)-x3+(4x2-6x2)+5x+(9-2)
=-x3-2x2+5x+7
B(x)=-3x4-(2x3-5x3+2x3)+10x2-(8x-8x)-7
-3x4+x3+10x2-7
b)
A(x)= -x3- 2x2 + 5x+7
B(x)=-3x4+x3+10x2 -7
P(x)=-3x4-0+8x2 +5x+0
A(x)= -x3- 2x2 + 5x+7
B(x)=-3x4+x3+10x2 -7
Q(x)=3x4-2x3-12x10+5x+14
c)Thay x=-1 vào đt P(x)
Ta có: P(-1)=(-3)(-1)4-8(-1)2+5(-1)
=-3-8+5
=0
CHO MIK NHA
THANK!
CHÚC PN HỌC GIỎI ^ -*