Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M(x)= (10x^4 +2x^3 -5x^2 +8x +8) - (10x^4 -3x^3 +4x^2 +4x+2)
Viết đa thức P(x) = 5x3 – 4x2 + 7x - 2 dưới dạng:
a) Tổng của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 – 4x2) + (7x - 2)
b) Hiệu của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 + 7x) - (4x2 + 2)
Chú ý: Đáp số ở câu a; b không duy nhất, các bạn có thể tìm thêm đa thúc khác.
Bạn Vinh nói đúng: Ta có thể viết đa thức đã cho thành tổng của hai đa thúc bậc 4 chẳng hạn như:
5x3 – 4x2 + 7x - 2 = (2x4 + 5x3 + 7x) + (– 2x4 – 4x2 - 2).
đa thức P(x) = 5x3 – 4x2 + 7x - 2
dưới dạng: a) Tổng của hai đa thức một biến. 5x3 – 4x2 + 7x - 2 = (5x3 – 4x2 ) + (7x - 2)
b) Hiệu của hai đa thức một biến. 5x3 – 4x2 + 7x - 2 = (5x3 + 7x) - (4x2
còn lại bn tự làm nhé
:ư3
Viết đa thức P(x) = 5x3 – 4x2 +7x – 2 dưới dạng hiệu của hai đa thức một biến.
Có nhiều cách viết, ví dụ:
Cách 1: Nhóm các hạng tử của đa thức P(x) thành 2 đa thức khác
P(x) = 5x3 – 4x2 +7x – 2 = (5x3 + 7x) - (4x2 + 2)
⇒ P(x) là hiệu của hai đa thức một biến là: 5x3 + 7x và 4x2 + 2
P(x) = 5x3 – 4x2 +7x – 2 = (5x3 – 4x2) – (-7x + 2)
⇒ P(x) là hiệu của hai đa thức một biến là: 5x3 – 4x2 và -7x + 2
Cách 2: Viết các hạng tử của đa thức P(x) thành tổng hay hiệu của hai đơn thức. Sau đó nhóm thành 2 đa thức khác
Ví dụ: Viết 5x3 = 6x3 - x3; – 4x2 = – 3x2 - x2
Nên: P(x) = 5x3 – 4x2 +7x – 2 = 6x3 - x3 – 3x2 - x2 +7x – 2 = (6x3 – 3x2 + 7x) - (x3 + x2 + 2)
⇒ P(x) là hiệu của hai đa thức một biến là: 6x3 – 3x2 + 7x và x3 + x2 + 2
\(P(x) = 2x + 4{x^3} + 7{x^2} - 10x + 5{x^3} - 8{x^2}\)
\(=(4{x^3}+5{x^3})+( 7{x^2}- 8{x^2})+(2x-10x)\)
\( = 9{x^3} - {x^2} - 8x\)
Ta thấy số mũ cao nhất của biến x là 3 nên \(P(x)\) có bậc là 3
Hệ số của \({x^3}\) là 9
Hệ số của \({x^2}\)là -1
Hệ số của x là -8
Hệ số tự do là 0
Viết đa thức P(x) = 5x3 – 4x2 + 7x - 2 dưới dạng:
a) Tổng của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 – 4x2) + (7x - 2)
b) Hiệu của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 + 7x) - (4x2 + 2)
Chú ý: Đáp số ở câu a; b không duy nhất, các bạn có thể tìm thêm đa thúc khác.
Bạn Vinh nói đúng: Ta có thể viết đa thức đã cho thành tổng của hai đa thúc bậc 4 chẳng hạn như:
5x3 – 4x2 + 7x - 2 = (2x4 + 5x3 + 7x) + (– 2x4 – 4x2 - 2).
Viết đa thức P(x) = 5x3 – 4x2 + 7x - 2 dưới dạng:
a) Tổng của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 – 4x2) + (7x - 2)
b) Hiệu của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 + 7x) - (4x2 + 2)
Chú ý: Đáp số ở câu a; b không duy nhất, các bạn có thể tìm thêm đa thúc khác.
Bạn Vinh nói đúng: Ta có thể viết đa thức đã cho thành tổng của hai đa thúc bậc 4 chẳng hạn như:
5x3 – 4x2 + 7x - 2 = (2x4 + 5x3 + 7x) + (– 2x4 – 4x2 - 2).
a) Ta có thể viết đa thức 5x3−4x2+7x−2 thành tổng của hai đa thức như sau:
5x3−4x2+7x−2 = 5x3+(−4x2+7x−2)
b)Hiệu của hai đa thức:
5x3−4x2+7x−2=5x3−(4x2−7x+2)
*Bạn Vinh nêu nhận xét : " Ta có thể viết đa thức đã cho thành tổng của hai đa thức bậc 4" là đứng.
Vì,chẳng hạn:
5x3−4x2+7x−2=(x4+4x3−3x2+7x−2)+(−x4+x3−x2)
Bạn Vinh nói đúng: Ta có thể viết đa thức đã cho thành tổng của hai đa thức bậc 4 chẳng hạn như:
P(x) = 5x3 – 4x2 +7x – 2 = (2x4 + 5x3 + 7x) + (–2x4 – 4x2 – 2)
⇒ P(x) là tổng của hai đa thức bậc 4 là: 2x4 + 5x3 + 7x và –2x4 – 4x2 – 2
a: \(P\left(x\right)=\left(5x^3-2x^2+3x-2\right)+\left(-2x^2+4x\right)\)
b: \(P\left(x\right)=\left(5x^3-2x^2+3x-2\right)-\left(2x^2-4x\right)\)
\(\begin{array}{l}P(x) = {x^3} - 4{x^2} + 8x - 2\\ = {x^3} - 4{x^2} + 8x - 2 + {x^4} - {x^4}\\ = {x^4} + {x^3} - 4{x^2} + 8x - 2 - {x^4}\\ = ({x^4} + {x^3} - 4{x^2} + 8x - 2) + ( - {x^4})\end{array}\)