Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)\) chia \(x+2\) dư \(10\Rightarrow f\left(-2\right)=10\)
\(f\left(x\right)\) chia \(x-2\) dư \(24\Rightarrow f\left(2\right)=24\)
\(f\left(x\right)\) chia \(x^2-4\) sẽ có số dư cao nhất là đa thức bậc 1
\(\Rightarrow f\left(x\right)=\left(x^2-4\right).\left(-5x\right)+ax+b\) (1)
Lần lượt thay \(x=2\) và \(x=-2\) vào (1):
\(\left\{{}\begin{matrix}24=2a+b\\10=-2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{7}{2}\\b=17\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=-5x\left(x^2-4\right)+\frac{7}{2}x+17=-5x^3+\frac{47}{2}x+17\)
a)Ta có :
3x2-3xy-6x-6y=3(x2-xy-2x+2y)
=3[x(x-y)-2(x-y)]
=3(x-y)(x-2) (đpcm)
a: \(2x^3+x^2-13x+6\)
\(=2x^3-4x^2+5x^2-10x-3x+6\)
\(=\left(x-2\right)\left(2x^2+5x-3\right)\)
\(=\left(x-2\right)\left(2x^2+6x-x-3\right)\)
\(=\left(x-2\right)\left(x+3\right)\left(2x-1\right)\)
b: \(2x^2+y^2-6x+2xy-2y+5=0\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-4x+4-2x-2y+1=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-2\right)^2-2\left(x+y\right)+1=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(x+y-1\right)^2=0\)
=>x-2=0 và x+y-1=0
=>x=2 và y=-1
C1
a) -7x(3x-2)=-21x^2+14x
b) 87^2+26.87+13^2=87^2+2.13.87+13^2=(87+13)^2=100^2
C2
a) (x-5)(x+5)
b)3x(x+5)-2(x+5)=(3x-2)(x+5)=0
\(\Rightarrow\left[\begin{array}{nghiempt}3x-2=0\\x+5=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{2}{3}\\x=-5\end{array}\right.\)
Vậy S={-5;2/3}
C3:
a)3x^3-2x^2+2=(x+1)(3x^2-5x-5)-3
b) Để A chia hết cho B=> x+1\(\inƯ\left(-3\right)\)
\(\Rightarrow\begin{cases}x+1=3\\x+1=-3\\x+1=1\\x+1=-1\end{cases}\)\(\Rightarrow\begin{cases}x=2\\x=-4\\x=0\\x=-2\end{cases}\)
Thay x = 13 vào biểu thức, ta có:
\(P\left(13\right)=1+13+13^2+...+13^{100}\)
\(13P\left(13\right)=13+13^2+13^3+...+13^{101}\)
\(\Rightarrow13P\left(13\right)-P\left(13\right)=\left(13+13^2+13^3+...+13^{101}\right)-\left(1+13+13^2+...+13^{100}\right)\)
\(\Rightarrow12P\left(13\right)=13^{101}-1\)
\(\Rightarrow P\left(13\right)=\dfrac{13^{101}-1}{12}\)
Ta có: 51.12 = 612
Vì 13101 đồng dư với 421 ( mod 612 )
\(\Rightarrow13^{101}=612.k+421\) ( \(k\in Z\) )
\(\Rightarrow P\left(13\right)=\dfrac{612k+421-1}{12}\)
\(\Rightarrow P\left(13\right)=\dfrac{612k+420}{12}\)
\(\Rightarrow P\left(13\right)=51k+35\)
Vậy P(13) chia cho 51 dư 35.
Mình vẫn chưa hiểu phần 51.12 = 612. Bạn giải thích đi