Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(f(x)=x\left(\frac{x^{2013}}{3}-\frac{x^{2014}}{5}+\frac{x^{2015}}{7}+\frac{x^2}{2}\right)-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\)
\(f(x)=\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^3}{2}-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\)
\(f(x)=\frac{x^3}{2}-\frac{x^2}{2}=\frac{x^2(x-1)}{2}\)
Với mọi giá trị nguyên của $x$ thì $(x-1)x$ là tích của hai số nguyên liên tiếp nên luôn chia hết cho $2$
Do đó: \(x^2(x-1)\vdots 2\Rightarrow f(x)=\frac{x^2(x-1)}{2}\in\mathbb{Z}\) với mọi gt nguyên của $x$ (đpcm)
Ta có: \(m^2.\left(x-1\right)^{2013}-13.m.\left(x-1\right)^{2014}+36.\left(x-1\right)^{2015}=0\)
\(m^2.\left(x-1\right)^{2013}-13.m.\left(x-1\right)^{2014}+36.\left(x-1\right)^{2015}=0\)
Với x = 2014 => x + 1 = 2015
Ta có :
\(f\left(x\right)=x^{17}-2015x^{16}+2015x^{15}-2015x^{14}+....+2015x-1\)
<=> \(f\left(x\right)=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-\left(x+1\right)x^{14}+....+\left(x+1\right)x-1\)
<=> \(f\left(x\right)=x-1\)
<=> \(f\left(2014\right)=2014-1=2013\)
\(P\left(x\right)=x^{2017}-2018x^{2017}+2018x^{2016}-...-2018x+1\)
Vì \(x=2017\)
\(\Leftrightarrow x+1=2018\)
Thay vào P(x) ta được :
\(P\left(x\right)=x^{2017}-x^{2017}\left(x+1\right)+x^{2016}\left(x+1\right)-...-x\left(x+1\right)+1\)
\(P\left(x\right)=x^{2017}-x^{2018}-x^{2017}+x^{2017}+x^{2016}-...-x^2-x+1\)
\(P\left(x\right)=-x^{2018}+1\)
\(P\left(x\right)=-2017^{2018}+1\)
thay x=2014 ta có:
\(f\left(x\right)=2014^{17}-2015.2014^{16}+2015.2014^{15}-2015.2014^{14}+...+2015.2014-1 \)
=2014^17 - (2014+1).2014^16 + (2014+1).2014^15 - (2014+1).2014^14 + ... + (2014+1).2014-1
=2014^17 - 2014^17 - 2014^16 + 2014^16 + 2014^15 - 2014^15 + 2014^14 + ...-2014^3 - 2014^2 + 2014^2 + 2014 -1
=2014-1=2013
= em không biết .