K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

*Bài làm:

~I) Tìm x:

Ta có: \(\frac{1}{2.4}\) + \(\frac{1}{4.6}\) + ... + \(\frac{1}{\left(2x-2\right)2x}\) = \(\frac{11}{48}\)

\(2\) . (\(\frac{1}{2.4}\) + \(\frac{1}{4.6}\) + ... + \(\frac{1}{\left(2x-2\right)2x}\)) = \(2\) . \(\frac{11}{48}\)

\(\frac{2}{2.4}\) + \(\frac{2}{4.6}\) + ... + \(\frac{2}{\left(2x-2\right)2x}\) = \(\frac{22}{48}\)

⇒ (\(\frac{1}{2}\) - \(\frac{1}{4}\)) + (\(\frac{1}{4}\) - \(\frac{1}{6}\)) + ... + (\(\frac{1}{2x-2}\) - \(\frac{1}{2x}\)) = \(\frac{22}{48}\)

\(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{4}\) - \(\frac{1}{6}\) + \(\frac{1}{6}\) - ... - \(\frac{1}{2x-2}\) + \(\frac{1}{2x-2}\) - \(\frac{1}{2x}\) = \(\frac{22}{48}\)

\(\frac{1}{2}\) - \(\frac{1}{2x}\) = \(\frac{22}{48}\)

\(\frac{x}{x}\) . \(\frac{1}{2}\) - \(\frac{1}{2x}\) = \(\frac{22}{48}\)

\(\frac{x}{2x}\) - \(\frac{1}{2x}\) = \(\frac{22}{48}\)

\(\frac{x-1}{2x}\) = \(\frac{22}{48}\)

\(\frac{x-1}{2x}\) = \(\frac{22}{48}\)

\(x-1\) = \(\frac{22}{48}\) . \(2x\)

\(x-1\) = \(\frac{44x}{48}\)

\(x\) = \(\frac{44x}{48}\) + \(1\)

\(x\) = \(\frac{44x}{48}\) + \(\frac{48}{48}\)

\(x\) = \(\frac{44x+48}{48}\)

\(x\) = \(12\) (Chỗ này mình bấm máy tính nên hơi tắt;Bạn thông cảm)

*Vậy \(x\) = \(12\) .

11 tháng 8 2019

Violympic toán 7

a) Ta có: \(Q\left(x\right)=x\cdot\left(\frac{x^2}{2}-\frac{1}{2}+\frac{1}{2}x\right)-\left(\frac{x}{3}-\frac{1}{2}x^4+x^2-\frac{x}{3}\right)\)

\(=\frac{x^3}{2}-\frac{x}{2}+\frac{1}{2}x^2-\frac{x}{3}+\frac{1}{2}x^4-x^2+\frac{x}{3}\)

\(=\frac{1}{2}x^4+\frac{1}{2}x^3-\frac{1}{2}x^2-\frac{1}{2}x\)

b) Thay \(x=-\frac{1}{2}\) vào biểu thức \(Q\left(x\right)=\frac{1}{2}x^4+\frac{1}{2}x^3-\frac{1}{2}x^2-\frac{1}{2}x\), ta được:

\(Q\left(-\frac{1}{2}\right)=\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^4+\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^3-\frac{1}{2}\cdot\left(-\frac{1}{2}\right)^2-\frac{1}{2}\cdot\frac{-1}{2}\)

\(=\frac{1}{2}\cdot\frac{1}{16}-\frac{1}{2}\cdot\frac{1}{8}-\frac{1}{2}\cdot\frac{1}{4}+\frac{1}{4}\)

\(=\frac{1}{32}-\frac{1}{16}-\frac{1}{8}+\frac{1}{4}\)

\(=\frac{3}{32}\)

Vậy: \(Q\left(-\frac{1}{2}\right)=\frac{3}{32}\)

28 tháng 7 2020

- cảm ơn ạ ><

24 tháng 10 2016

=\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}\right)\)

\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{10}\right)\)

\(\frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\right)\)

=\(\frac{29}{45}\)

24 tháng 10 2016

29/45 bạn nhé

7 tháng 9 2016

\(A=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(A=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(A=\frac{4}{9}-\frac{1}{5}=\frac{11}{45}\)

7 tháng 9 2016

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

\(S=\frac{4}{9}-\frac{1}{5}\)

\(S=\frac{11}{45}\)

9 tháng 5 2018

\(M\left(x\right)=\frac{1}{2}x^3-x^2-3x+3\)

\(N\left(x\right)=\frac{1}{2}x^3+x^2-4x+6\)

\(M\left(x\right)-N\left(x\right)=\left(\frac{1}{2}x^3-x^2-3x+3\right)-\left(\frac{1}{2}x^3+x^2-4x+6\right)\)

\(M\left(x\right)-N\left(x\right)=\frac{1}{2}x^3-x^2-3x+3-\frac{1}{2}x^3-x^2+4x-6\)

\(M\left(x\right)-N\left(x\right)=\left(\frac{1}{2}x^3-\frac{1}{2}x^3\right)+\left(-x^2-x^2\right)+\left(-3x+4x\right)+\left(3-6\right)\)

\(M\left(x\right)-N\left(x\right)=-2x^2+x-3\)

A(x)=M(x)-N(x)=-2x2+x-3=0

đang suy nghĩ tí làm lại sau :v

8 tháng 3 2017

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)

mà 3^6/9-81=0  => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0

20 tháng 9 2019

a. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath