Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: k(1) = a + b(1 - 1) + c(1 - 1)(1 - 2) = 1
=> a + b.0 + c.0.(-1) = 1
=> a = 1
k(2) = a + b.(2 - 1) + c(2 - 1)(2 - 2) = 3
=> a + b.1 + c.1 . 0 = 3
=> a + b = 3
Mà a = 1 => b = 3 - 1 = 2
k(0) = a + b.(0 - 1) + c(0 - 1)(0 - 2) = 5
=> a + b . (-1) + c.(-1).(-2) = 5
=> a - b + 2c = 5
Mà a = 1; b = 2 => 1 - 2 + 2c = 5
=> -1 + 2c = 5
=> 2c = 5 + 1
=> 2c = 6
=> c = 6 : 2 = 3
Vậy a = 1; b = 2; c = 3
3) tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2
\(\Rightarrow M\left(x\right)=x^2-mx+2\)
\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)
\(\Leftrightarrow1-m\left(-1\right)=-2\)
\(\Leftrightarrow m\left(-1\right)=3\)
\(\Leftrightarrow m=-3\)
vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)
4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)
\(\Leftrightarrow K\left(2\right)=a+b=3\)
\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)
\(\Leftrightarrow a+\left(-b\right)+c2=5\)
ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
vậy \(a=1;b=2;c=3\)
1. a) Sắp xếp :
f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9
g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9
b) h(x) = f(x) + g(x)
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )
= 3x2- 3x
c) h(x) có nghiệm <=> 3x2 - 3x = 0
<=> 3x( x - 1 ) = 0
<=> 3x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 1
Vậy nghiệm của h(x) là x= 0 hoặc x = 1
2. D(x) = A(x) + B(x) - C(x)
= 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )
= 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2
= ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 )
= 9x3
b) D(x) có nghiệm <=> 9x3 = 0 => x = 0
Vậy nghiệm của D(x) là x = 0
3. M(x) = x2 - mx + 2
x = -1 là nghiệm của M(x)
=> M(-1) = (-1)2 - m(-1) + 2 = 0
=> 1 + m + 2 = 0
=> 3 + m = 0
=> m = -3
Vậy với m = -3 , M(x) có nghiệm x = -1
4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )
K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1
=> a + 0b + c.0.(-1) = 1
=> a + 0 = 1
=> a = 1
K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3
=> 1 + 1b + c.1.0 = 3
=> 1 + b + 0 = 3
=> b + 1 = 3
=> b = 2
K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5
=> 1 + 5(-1) + c(-1)(-2) = 5
=> 1 - 5 + 2c = 5
=> 2c - 4 = 5
=> 2c = 9
=> c = 9/2
Vậy a = 1 ; b = 2 ; c = 9/2
1. Ta có: h(1)=2 ⇔ a1+b=2 ⇔ b=2-a (1) h(2)=1 ⇔ a2+b=1 ⇔ b=1-2a (2) Từ (1) và (2) => 2-a=1-2a⇔2-1=a-2a⇔1=-a=> a=-1
Thay a=-1 vào (1) ta có: b=2-(-1) => b=3
Vậy b=3 và a=-1
\(K\left(x\right)=x^3\left(5-a\right)-7x^2+8x-b\)
Vì K(x) có bậc là 2 nên 5-a=0
hay a=5
Vì K(-1)=3 nên -7-8-b=3
=>-b=18
hay b=-18
\(\Leftrightarrow A\left(x\right)=\left(n+p\left(k-1\right)\right)x+m\)
\(\left\{{}\begin{matrix}A\left(0\right)=\left[n+p\left(k-1\right)\right].0+m=5\Rightarrow m=5\\A\left(1\right)=\left[n+p\left(k-1\right)\right].1+5=2\\A\left(2\right)=\left[n+p\left(k-1\right)\right].2+5=7\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\end{matrix}\) (I)\(\left(2\right)and\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}n+p\left(k-1\right)=-3\\n+p\left(k-1\right)=1\end{matrix}\right.\) (ii)
(ii) vô nghiệm không tồn tại đa thức A(x) thỏa mãn yêu cầu bài toán
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\\a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\\a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=3-a=2\\a-b+2c=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)