K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

\(g\left(x\right)=1+x+x^2+x^3+....+x^{2020}\)

\(\Rightarrow g\left(x\right)\cdot x=x+x^2+x^3+x^4+......+x^{2021}\)

\(\Rightarrow g\left(x\right)\cdot\left(x-1\right)=x^{2021}-1\)

\(\Rightarrow g\left(x\right)=\frac{x^{2021}-1}{x-1}\)

\(\Rightarrow\hept{\begin{cases}g\left(-1\right)=\frac{\left(-1\right)^{2021}-1}{-1-1}=-1\\g\left(2\right)=\frac{2^{2021}-1}{2-1}=2^{2021}-1\end{cases}}\)

NV
2 tháng 4 2019

Ta có: \(\left\{{}\begin{matrix}\left(-1\right)^{2n}=1\\\left(-1\right)^{2n+1}=-1\end{matrix}\right.\) với mọi \(n\in N\)

\(\Rightarrow g\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{2020}\)

\(g\left(-1\right)=1-1+1-1+...+1-1+1\)

\(g\left(-1\right)=0+0+0+...+0+1=1\)

Lại có:

\(g\left(2\right)=1+2+2^2+2^3+...+2^{2020}\)

\(\Rightarrow2.g\left(2\right)=2+2^2+2^3+...+2^{2020}+2^{2021}\)

\(\Rightarrow2.g\left(2\right)+1-2^{2021}=1+2+2^2+2^3+...+2^{2020}\)

\(\Rightarrow2.g\left(2\right)+1-2^{2021}=g\left(2\right)\)

\(\Rightarrow g\left(2\right)=2^{2021}-1\)

23 tháng 7 2021

a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)

\(f\left(x\right)-g\left(x\right)=8x\)

 \(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)

 \(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)

 \(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)

b) 8x=0

=> x=0

=> Nghiệm đa thức f(x)-g(x)

c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :

   \(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)

\(=6,75+9-9-2\)

\(=4,75\)

#H

Tính [G(x) - f(x) ] = ( \(1-x^2+.....+x^{2020}\)) -  (\(x^{2020}-x^{2019}+....-x+1\))

                          = (\(x^{2020}-x^{2019}+....-x+1\)) - (\(x^{2020}-x^{2019}+....-x+1\))

                          = 0

=> h(x) = [G(x) - f(x) ] * [G(x) + f(x) ]

            = 0 * [G(x) + f(x) ]

           = 0

12 tháng 5 2016

xét f(x)=0=> (x+1)(x-1)=0

   =>__x+1=0=>x=-1

      |__x-1=0=> x=1

vậy nghiêm của f(x) là ±1

12 tháng 5 2016

xét f(x)=0 => (x+1)(x-1)=0

=> __x+1=0=> x=-1

    |__x-1=0=> x=1

vậy nghiệm của f(x) là ±1

ta có: nghiệm của f(x) cũng là nghiệm của g(x) nên ±1 cũng là nghiêm của g(x)

g(-1)=\(\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)+2=-1+a-b+2=1+a-b=0\)

g(1)=\(1^3+a.1^2+b.1+2=1+a+b+2=3+a+b=0\)

=>1+a-b=3+a+b

=>1-3-b-b=-a+a

=> -2-2b=0

=> -2b=2

=>b=2:(-2)=-1

thay b vào ta có:

\(g\left(1\right)=3+a+\left(-1\right)=0\)

=> 2+a=0

=> a=-2

Vậy a=-2 và b=-1

6 tháng 5 2018

ahihi

15 tháng 5 2018

Ta có: f(x)=(x+1).(x-1)=0

=> x+1=0=>x= -1   (chuyển vế đổi dấu)

x-1=0=>x=1

g(x)=x^3+ax^2+bc+2

g(-1)=(-1)^3+a.(-1)^2+b.(-1)+2=0

<=> -1+a+b+2=0

=>a= -1-b

g(1)= 1^3+a.1^2+b.1+2=0

<=>1+a+b+2=0

=>3+a+b=0

=>b=-3

a=0 

Vậy a=0 ; b= -3

15 tháng 4 2019

a)f(x)+g(x)=10xmũ2-8x+ 14/3

b)f(x)-g(x)=10x mũ 2 +4x+16/3

nghiệm chưa tính ddcj nha

16 tháng 4 2019

a;\(f\left(x\right)+g\left(x\right)=\left(5x^2-2x+5\right)+\left(5x^2-6x-\frac{1}{3}\right)=25x^2-8x+\frac{1}{4}\)

b'\(f\left(x\right)-g\left(x\right)=\left(5x^2-2x+5\right)-\left(5x^2-6x-\frac{1}{3}\right)=4x+\frac{16}{3}\)

c;\(f\left(x\right)-g\left(x\right)=0\Leftrightarrow4x+\frac{16}{3}=0\)

                                         \(\Leftrightarrow4x=-\frac{16}{3}\)

                                           \(\Leftrightarrow x=-\frac{4}{3}\)

Vậy nghiệm của đa thức f(x)-g(x) là : x=-4/3