Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
Bạn viết nhầm đề thì phải, nghiệm của pt thứ 2 là \(x_3;x_4\) mới đúng chứ
Theo định lý Viet, ta có: \(\left\{{}\begin{matrix}x_1.x_2=1\\x_1+x_2=-2009\end{matrix}\right.\)
\(\Rightarrow\left(x_1+x_3\right)\left(x_2+x_3\right)\left(x_1-x_4\right)\left(x_2-x_4\right)=\left(x_1x_2+x_1x_3+x_2x_3+x_3^2\right)\left(x_1x_2-x_1x_4-x_2x_4+x_4^2\right)\)
\(=\left(x_1x_2+x_3\left(x_1+x_2\right)+x_3^2\right)\left(x_1x_2-x_4\left(x_1+x_2\right)+x_4^2\right)\)
\(=\left(x^2_3-2009x_3+1\right)\left(x^2_4+2009x_4+1\right)=\left(x^2_3+2010x_3+1-4019x_3\right)\left(x^2_4+2010x_4+1-x_4\right)\)
Mà \(x_3;x_4\) là nghiệm của phương trình \(x^2+2010x+1=0\Rightarrow\left\{{}\begin{matrix}x_3^2+2010x_3+1=0\\x_4^2+2010x_4+1=0\end{matrix}\right.\)
\(\Rightarrow\text{}\text{}\left(x^2_3+2010x_3+1-4019x_3\right)\left(x^2_4+2010x_4+1-x_4\right)=-4019x_3.\left(-x_4\right)=4019.x_3.x_4=4019\)
Do \(x_3.x_4=1\) theo Viet