Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
Với \(x=1\): \(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).
Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).
2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)
Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).
Ta có hệ:
\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).
1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.
\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)
\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)
\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)
\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)
\(\rightarrow\left(-1\right).f\left(3\right)=0\)
\(\rightarrow f\left(3\right)=0\)
\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)
\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)
\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)
\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)
\(\rightarrow0=\left(-1\right).f\left(0\right)\)
\(\rightarrow f\left(0\right)=0\)
\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)
\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)
\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)
\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)
\(\rightarrow0=1.f\left(2\right)\)
\(\rightarrow f\left(2\right)=0\)
\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{Vậy ...}\)
Vì f (x) = 2x2 + ax + 4 nên
f (1) = 2 . 12 + a . 1 + 4 = 2 + a + 4 = 6 + a
f (-1) = 2 . ( - 1 )2 + a . ( - 1 ) + 4 = 2 - a + 4 = 6 - a
Vì g (x) = x2 - 5x - b nên
g (2) = 4 - 10 - b = - 6 - b
g (5) = 25 - 25 - b = - b
Mà f (1) = g (2) và f(-1)=g(5)
=> \(\hept{\begin{cases}6+a=-6-b\\6-a=-b\end{cases}}\)=>\(\hept{\begin{cases}6+a+6+b=0\\6-a+b=0\end{cases}}\)=> \(\hept{\begin{cases}a+b=-12\\a-b=6\end{cases}}\)
=> \(\hept{\begin{cases}a=-3\\b=-9\end{cases}}\)
Vậy ...
* \(f\left(x\right)=2x^2+ax+4\)
\(\Rightarrow f\left(1\right)=2.1^2+a.1+4\)
\(\Rightarrow f\left(1\right)=2+a+4\)
\(\Rightarrow f\left(1\right)=a+6\)
và \(g\left(x\right)=x^2-5x-b\)
\(\Rightarrow g\left(2\right)=2^2-5.2-b\)
\(\Rightarrow g\left(2\right)=4-10-b\)
\(\Rightarrow g\left(2\right)=-6-b\)
Để \(f\left(1\right)=g\left(2\right)\) thì \(a+6=-6-b\)\(\Leftrightarrow a+b=-12\)(1)
*\(f\left(-1\right)=2.\left(-1\right)^2+a.\left(-1\right)+4\)
\(\Rightarrow f\left(-1\right)=2-a+4\)
\(\Rightarrow f\left(-1\right)=6-a\)
và \(g\left(5\right)=5^2-5.5-b\)
\(\Rightarrow g\left(5\right)=25-25-b\)
\(\Rightarrow g\left(5\right)=-b\)
Để \(f\left(-1\right)=g\left(5\right)\)thì \(6-a=-b\)\(\Leftrightarrow-a+b=-6\)(2)
Từ (1) và (2), có a + b = -12 (1)
và -a + b = -6 (2)
Cộng (1) và (2) vế theo vế, có: \(2b=-18\)
\(\Rightarrow b=-9\)
\(\Rightarrow a=-12-\left(-9\right)=-3\)
Ta có : f(1) = 2,12 +a.1 +4 = 6a
g(2) = 22 - 5.2 -b = -b-6
Có : f(1) = g(2) => 6+a=-b-6
a = -b - 6 - 6 = -b-12 (1)
f(1) = 2.(-1)2 +a . (-1)+4
=2.1 - a + 4 = 2-a+4 = 6-a
g(5) = 52 - 5.5 -b = 25-25 - b = -b
f(1) = g(5) => 6-a = -b
a = 6+b (2)
Từ (1) và (2) => 6+b = b-12
b+b = 12-6
2b = -18
b = \(\frac{-18}{2}\)
b = -9
Thay b=-9 vào (2) => a=6-9 = -3
Vậy a=-3 , b=-9
Đúng đó bn !