Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(1\right)=1+1+1^2+...+1^{2013}=1.2014=2014\)
\(f\left(-1\right)=1-1+1-1+1-1+...+1-1=0+0+0+...+0=0\)
đúng nha
Ta có: \(f\left(1\right)=1+1+1+....+1\)
=> \(f\left(1\right)=2012\)
Ta lại có: \(f\left(-1\right)=1-1+1-1+...+1-1\) = 0
ta có : \(f\)(1) = \(1+1+1+1+.....+1+1\) = 1 + 2011 = \(2012\)
: \(f\)(-1) = \(1-1+1-1+.....+1-1\) = 0
\(f\left(x\right)=1+x+x^2+x^3+...+x^{2010}+x^{2011}\)
\(f\left(1\right)=1+1+1+1+....+1+1\)(2013 hạng tử)
\(f\left(1\right)=2013\)
\(f\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+....+\left(-1\right)^{2010}+\left(-1\right)^{2011}\)
\(f\left(-1\right)=1+\left(-1\right)+1+\left(-1\right)+...+1+\left(-1\right)\)
\(f\left(-1\right)=\left[1+\left(-1\right)\right]+\left[1+\left(-1\right)\right]+....+\left[1+\left(-1\right)\right]+\left(-1\right)\)
\(f\left(-1\right)=-1\)
Nhầm :v làm lại
\(f\left(1\right)=1+1+1^2+1^3+....+1^{2010}+1^{2011}.\)(2012 số 1)
\(f\left(1\right)=1.2012=2012\)
\(f\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+....+\left(-1\right)^{2010}+\left(-1\right)^{2011}\)
\(f\left(-1\right)=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)(1006 cặp)
\(f\left(-1\right)=0\)
\(f\left(x\right)=4x^2+3x+1\)
\(g\left(x\right)=3x^2-2x+1.\)
a) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(\Rightarrow h\left(x\right)=\left(4x^2+3x+1\right)-\left(3x^2-2x+1\right)\)
\(\Rightarrow h\left(x\right)=4x^2+3x+1-3x^2+2x-1\)
\(\Rightarrow h\left(x\right)=\left(4x^2-3x^2\right)+\left(3x+2x\right)+\left(1-1\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x.\)
b) Ta có \(h\left(x\right)=x^2+5x.\)
Đặt \(x^2+5x=0\)
\(\Rightarrow x.\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x=0\) và \(x=-5\) là các nghiệm của đa thức \(h\left(x\right).\)
Chúc bạn học tốt!
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
Bài 1 :
\(P\left(0\right)=d=2017\)
\(P\left(1\right)=a+b+c+d=2\Rightarrow a+b+c=-2015\)(*)
\(P\left(-1\right)=-a+b-c+d=6\Rightarrow-a+b-c=6-2017=-2023\)(**)
\(P\left(2\right)=8a+4b+2c+d=-6033\Rightarrow8a+4b+2c=-8050\)
Lấy (*) + (**) ta được : \(2b=-4038\Rightarrow b=-2019\)
Thay vào (*) ta được \(a+c=4\)(***)
Lại có : \(8a+4b+2c=-8050\Rightarrow8a+2c=-8050+8076=26\)(****)
(***) => \(8a+8c=32\)(*****)
Lấy (****) - (*****) => \(-6c=-6\Rightarrow c=1\Rightarrow a=3\)
Vậy ....
Với x = 2010 => 2011 = x+1
Khi đó: f(x) = x^25 - (x+1)x^24+(x+1)x^23 - (x+1)x^22 + ... + (x+1)x - 1
= x^25 - x^25 - x^24 + x^24 - x^23 - x^23 - x^22 +...+ x^2 + x - 1
= x - 1
= 2010 - 1 (vì x = 2010)
= 1999
Vậy f(2010) = 1999 tại x = 2010
ủng hộ mk nha!!!