K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Lời giải:

Ta có:
$f(1)=a+b+c$
$f(-2)=4a-2b+c$

$\Rightarrow 2f(-2)+3f(1)=2(4a-2b+c)+3(a+b+c)=11a-b+5c=0$

$\Rightarrow f(-2)=\frac{-3}{2}f(1)$

Vì $\frac{-3}{2}<0$ nên $f(-2)$ và $f(1)$ không thể cùng dấu.

3 tháng 5 2018

thực chất phép tính này chưa được thu gọ nó giống như phsp toaasn cấp 1 vậy nó được tách nhánh ra nhưng số chúng vẫn giống nhau nên chỉ cần thu gọn đa thức này vào rồi sau đó thay x = 2018 vô là xong

3 tháng 5 2018

a)

Có : \(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019x+1\)

                  \(=x^6-\left(2018+1\right)x^5+\left(2018+1\right)x^4-...-\left(2018+1\right)x+1\)

                    \(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)

                     \(=x^6-\left(x^6+x^5\right)+\left(x^5+x^4\right)-...-\left(x^2+x\right)+1\)

                       \(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)

                         \(=-x+1\)

- Thay \(x=2018\)vào đa thức \(f\left(x\right)\)ta được:

   \(f\left(2018\right)=-2018+1=-2017\)

Vậy \(f\left(2018\right)=-2017\)

4 tháng 7 2019

Ta có: f(1) = a.12 + b.1 + c = a + b + c

        f(-1) = a.(-1)2 + b.(-1) + c = a - b + c

=> f(1) = f(-1) => a + b + c = a - b  + c

        => a + b = a - b => a + b - a + b = 0

                           => 2b = 0 => b = 0

Khi đó, ta có: f(-x) = a.(-x)2 + b.(-x) + c = ax2 - 0 . x + c = ax2 + c

       f(x) = ax2 + bx + c = ax2 + 0.x + c = ax2 + c

=> f(-x) = f(x)

4 tháng 7 2019

Ta có: f(1) = a.12 + b.1 + c = a + b + c

          f(-1) = a.(-1)2 + b.(-1) + c = a - b + c

          f(1) = f(-1) <=> a + b + c = a - b + c <=> b = -b <=> b = 0

=> f(x) = ax2 + c luôn thỏa mãn điều kiện f(-x) = f(x) với mọi x

8 tháng 3 2016

vì f(1)=f(-1)

suy ra a-b+c=a+b+c

=> a-b=a+b

=> 2b=0

=>b=0

thay vào f(x) và f(-x) suy ra điều phải cm

8 tháng 3 2016

Với x=1 => f(x)=f(1)= a.1^2+b.1+c=a+b+c(1)

      x=-1 => f(x)=f(-1)= a.(-1)^2+b.(-1)+c=a-b+c(2)

Từ (1) và (2) => b=-b

                     => b.x=(-b).(-x)

=> f(x)=f(-x)=> đpcm

4 tháng 5 2018

Ko biết là bạn có cần nữa ko.

Nhưng mình vẫn trả lời cho những bạn khác đang cần.

Do P(0) và P(1) lẻ nên ta có:

P(0)=d=> d là số lẻ

P(1)=a+b+c+d => a+b+c+d là số lẻ

Giả sử y là nghiệm nguyên của P(x). Khi đó:

P(y)=ay^3+by^2+cy+d=0

     =>ay^3+by^2+cy=-d

Mà d là số lẻ

=>y là số lẻ

Lại có: P(y)-P(1)=(ay^3+by^2+cy+d)-(a+b+c+d)

                         =a(y^3-1)+b(y^2-1)+c(y-1)+(d-d)

                         =a(y^3-1)+b(y^2-1)+c(y-1)

Do y là số lẻ=>P(y)-P(1) là số chẵn(1)

Mà P(y)-P(1)= 0-a+b+c+d

                   =-a-b-c-d

Do a+b+c+d lẻ

=>-a-b-c-d lẻ 

Hay P(y)-P(1) là số lẻ(2)

Vì (1) và (2) mâu thuẫn

=> Giả sử sai

Hay f(x) ko thể có nghiệm là các số nguyên(ĐCCM)

4 tháng 5 2018

 Chỗ: mà d là số lẻ bổ sung thêm cho mình: nên -d là số lẻ nha

hihi

13a+b+2c=0

=>b=-13a-2c

f(-2)=4a-2b+c=4a+c+26a+4c=30a+5c

f(3)=9a+3b+c=9a+c-39a-6c=-30a-5c

=>f(-2)*f(3)<=0