K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

Vì f(0)=4 => c=4

=> f(x)=ax^2+bx+4

Vì f(1)=3 => a+b+4=3 => a+b=-1(1)

f(-1)=7 => a-b+4=7 => a-b =3 (2)

Từ (1),(2) => a = 1; b=-2 

=> f(x)=x^2-2x+4

5 tháng 4 2021

\(f\left(0\right)=ax^2+bx+c=a.0^2+b.0+c=c=4\)

\(f\left(1\right)=ax^2+bx+c=a+b+c=3\)

\(f\left(-1\right)=a-b+c=7\)

Ta có hpt \(\hept{\begin{cases}c=4\\a+b+c=3\\a-b+c=7\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-1\left(1\right)\\a-b=3\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta được : \(2b=-4\Rightarrow b=-2\)

Thay b = -2 vào (1) \(a-2=-1\Rightarrow a=1\)

Vậy \(\left(a;b;c\right)=\left(1;-2;4\right)\)

26 tháng 2 2016

a=o

b=-1

c=4

chắc chắn

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

21 tháng 4 2017

Ta có: f(0) = \(a.0^2+b.0+c=4\)

\(\Rightarrow0+0+c=4\Rightarrow c=4\)

\(f\left(1\right)=a.1^2+b.1+c=3\)

\(\Rightarrow a+b+c=3\Rightarrow a+b=-1\)

\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=7\)

\(\Rightarrow a-b+4=7\Rightarrow a-b=3\)

Ta có: \(\left(a+b\right)+\left(a-b\right)=a+a+b-b=2a=-1+3=2\)

\(\Rightarrow a=2:2=1\)

\(\Rightarrow b=-1-1=-2\)

Vậy a=1;b=-2;c=4

21 tháng 4 2017

Ta có:\(\hept{\begin{cases}f\left(0\right)=4\\f\left(1\right)=3\\f\left(-1\right)=7\end{cases}}\) \(\hept{\begin{cases}c=4\\a+b=3\\a-b=7\end{cases}}\)

                                                 \(\Rightarrow\hept{\begin{cases}c=4\\a=5\\b=-2\end{cases}}\)

5 tháng 4 2017

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)