K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2024

F(5)=0

26 tháng 3 2022

1) Xét với x=3x=3 thì : 3.f(5)=(32−9).f(3)3.f(5)=(32−9).f(3)

⇒3.f(5)=0⇒f(5)=0⇒3.f(5)=0⇒f(5)=0 (*)

2) Xét với x=0⇔0=−9.f(0)⇒f(0)=0x=0⇔0=−9.f(0)⇒f(0)=0

nên x=0x=0 là 1 nghiệm của đa thức f(x)f(x) (1)

Xét với x=−3⇔3.f(−1)=0⇒f(−1)=0x=−3⇔3.f(−1)=0⇒f(−1)=0

nên x=−1x=−1 là 1 nghiệm của đa thức f(x)f(x) (2)

Từ (*)(1)(2) ⇒⇒ f(x)f(x) có ít nhất 3 nghiệm.

\(a,f\left(5\right)\Rightarrow x=3\\ 3f\left(5\right)=0f\left(3\right)\Rightarrow f\left(5\right)=0\\ b,x=0\Rightarrow0f\left(2\right)=-9f\left(0\right)\Rightarrow f\left(0\right)=0\) 

=> x = 0 là nghiệm

\(x=-3\Rightarrow-3f\left(-1\right)=\left(9-9\right)f\left(-3\right)=0f\left(-3\right)\\ \Rightarrow f\left(-1\right)=0\) 

=> x = -1 là nghiệm

Theo ý a) ta có \(x=5\) 

\(\Rightarrow f\left(x\right)\) có 3 nghiệm \(=\left\{0;-1;5\right\}\)

11 tháng 2 2019

1) Thay x = 3, ta có: 

\(3.f\left(3+2\right)=\left(3^2-9\right).f\left(3\right)\)

\(\Rightarrow3.f\left(5\right)=0\Rightarrow f\left(5\right)=0\)

2) Thay x = -3

\(-3.f\left(-3+2\right)=\left[\left(-3\right)^2-9\right].f\left(-3\right)\)

\(\Rightarrow\left(-3\right).f\left(-1\right)=0\Rightarrow f\left(-1\right)=0\)

Thay x = 5

\(5.f\left(5+2\right)=\left(5^2-9\right).f\left(5\right)\)

\(\Rightarrow5f\left(7\right)=0\Rightarrow f\left(7\right)=0\)(vì f(5) = 0)

Vậy f (x) có ít nhất 3 nghiệm là: \(5;-1;7\)

Bài 2:

Đặt H(x)=0

\(\Leftrightarrow x^3+3x^2+3x+1=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Vậy: S={-1}