K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

mk chiu thua bn oi

23 tháng 9 2018

a) Ta có: a+b+c+d=0 
Suy ra f(1)= a.1^3+b.1^2+c.1+d=a+b+c+d=.0 
Vậy x=1 là một nghiệm của f(x) 
b) Ta có: a+c=b+d => -a+b-c+d=0 
Suy ra f(-1)= a.(-1)^3+b.(-1)^2+c.(-1)+d=-a+b-c+d=0 
Vậy x=-1 là một nghiệm của f(x)

6 tháng 6 2019

a) \(f\left(x\right)=8x^2-6x-2=0\)

\(\Leftrightarrow8x^2-8x+2x-2=0\)

\(\Leftrightarrow8x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(8x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}8x+2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=1\end{cases}}\)

Vậy \(x\in\left\{\frac{-1}{4};1\right\}\)

6 tháng 6 2019

b) \(g\left(x\right)=5x^2-6x+1=0\)

\(\Leftrightarrow5x^2-5x-x+1=0\)

\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=1\end{cases}}\)

Vậy \(x\in\left\{\frac{1}{5};1\right\}\)

6 tháng 9 2020

b) Vì \(\left|a\right|=\left|-a\right|\)\(\Rightarrow\)\(\left|x-2020\right|=\left|2020-x\right|\)

    Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)biểu thức P(x), ta có:

   \(\left|2020-x\right|+\left|x+2021\right|\ge\left|2020-x+x+2021\right|=4041\)

     \(\Rightarrow\)\(P\left(x\right)\ge4041\)

    Dấu "=" xảy ra khi và chỉ khi: \(\left(2020-x\right)\left(x+2021\right)>0\)

                                            \(\Leftrightarrow-2021< x< 2020\)

 Vậy \(P\left(x\right)_{min}=4041\)\(\Leftrightarrow\)\(-2021< x< 2020\)

6 tháng 9 2020

a,Thay x=1 là nghiệm của đa thức P(x)

Ta có:ax2+bx+c=0

          a.12+b.1+c=0

          a+b+c=0

=>x=1 là nghiệm của P(x)    (đpcm)

19 tháng 7 2016

Ta có : f(x) = a.12 + b.1 + c = a+b+c = 0 <=> x = 1 là nghiệm của đa thức f(x)

Với a  # 0 , ta có :

           \(f\left(\frac{c}{a}\right)=a.\left(\frac{c}{a}\right)^2+b.\frac{c}{a}+c=\frac{c^2}{a}+\frac{bc}{a}+c=\frac{c}{a}\left(c+b+a\right)=0\)

     <=>  \(x=\frac{c}{a}\) là nghiệm của đa thức \(f\left(x\right)\)

19 tháng 7 2016

Chị sẽ giúp vì em là bạn thân của chị mà

a) \(8x^3-18x^2+x+6\)

\(=8x^3-16x^2-2x^2+4x-3x+6\)

\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)

\(=\left(x-2\right)\left(8x^2-2x-3\right)\)

\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)

\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)

\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)

=> g(x) có 3 nghiệm là

x-2=0 <=> x=2

2x+1=0 <=> x=-1/2

4x-3=0 <=> x=3/4

vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}

b) tự làm đi (mk ko bt làm)

2 tháng 7 2015

bạn xem lại đề cho  f(x)

9 tháng 4 2016

ai ủng hộ bài này cái

9 tháng 4 2016

khó quá!

NV
13 tháng 1 2021

\(\left\{{}\begin{matrix}1+a+b+c=0\\8+4a+2b+c=0\\a+b=-16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=-1\\4a+2b+c=-8\\a+b=-16\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{9}{2}\\b=-\dfrac{41}{2}\\c=15\end{matrix}\right.\)