K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2024

\(\left(x-1\right)+B=A\)
\(\Rightarrow B=A-\left(x-1\right)\)

\(\Rightarrow B=\left(x^3+3x^2-2x^2+7\right)-\left(x-1\right)\)

\(\Rightarrow B=\left(x^3+x^2+7\right)-\left(x-1\right)\)

\(\Rightarrow B=x^3+x^2+7-x+1\)

\(\Rightarrow B=x^3+x^2-x+8\)

15 tháng 5 2023

Để tìm đa thức B(x), ta cần lấy A(x) trừ đi đa thức 2x^3 - x^2 + 3x + 1

A(x) - (2x^3 - x^2 + 3x + 1) = (-3x^3 + 4x + 5x^3 + x^2 - 8x-2)- (2x^3-x^2 + 3x + 1)

=-3x^3 + 4x + 5x^3 + x^2 - 8x-2- 2x^3 + x^2-3x-1

= 2x^3 + 6x

Vậy đa thức B(x) = -2x^3 - 6x.

a: A(x)+B(x)

=5x^3-2x+3x^2+2x-1

=5x^3+3x^2-1

b: A(x)-C(x)

=5x^3-2x-2x^3+3x^2-3x-1

=3x^3+3x^2-5x-1

c: M(x)=B(x)+C(x)

=3x^2+2x-1+2x^3-3x^2+3x+1

=2x^3+5x

d: B(1/3)=3*1/9+2*1/3-1=1/3+2/3-1=0

=>x=1/3 là nghiệm của B(x)

6 tháng 5 2022

a) _P(-1)= -3.(-1)^2 + (-1) + 7/4

= -3+(-1)+1,75

=-4+1,75
=-2,25

_P(-1/2)=-3.(-1/2)^2+(-1/2)+7/4

=-3.1/4+(-1/2)+7/4

=-3/4+(-2/4)+7/4

=-5/4+7/4

=2/4=1/2

b)     P(x)=-3x^2+x+7/4

-

        Q(x)=-3x^2+2x-2

P(x)-Q(x)=          -x+3,75

Xet -x+3,75=0

      -x          =0-3,75

     -x           =-3,75

 => x           =3,75

Vay nghiem cua da thuc P(x)-Q(x) la:3,75

3 tháng 5 2023

a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)

Bậc của P(x) là 3

\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)

Bậc của Q(x) là 3

b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)

3 tháng 5 2023

Mình cảm ơn

a: \(P\left(-1\right)=3-1+\dfrac{7}{4}=\dfrac{7}{4}+2=\dfrac{15}{4}\)

\(Q\left(\dfrac{1}{2}\right)=-3\cdot\dfrac{1}{4}+2\cdot\dfrac{1}{2}+2=-\dfrac{3}{4}+3=\dfrac{9}{4}\)

b: Đặt P(x)-Q(x)=0

\(\Leftrightarrow3x^2+x+\dfrac{7}{4}=-3x^2+2x+2\)

\(\Leftrightarrow6x^2-x-\dfrac{1}{4}=0\)

\(\Leftrightarrow24x^2-4x-1=0\)

\(\text{Δ}=\left(-4\right)^2-4\cdot24\cdot\left(-1\right)=112>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{4-4\sqrt{7}}{48}=\dfrac{1-\sqrt{7}}{12}\\x_2=\dfrac{1+\sqrt{7}}{12}\end{matrix}\right.\)

12 tháng 4 2019

1. Ta có \(|3x-1|=\frac{1}{2}\)

\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)

Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha

Sai thì thôi nha bn mik cx chưa lm dạng này bh

13 tháng 4 2019

Câu 1:

\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)

\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)

\(=x^2+9x+1\)

Ta có: \(\left|3x-1\right|=\frac{1}{2}\)

TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)

\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)

TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)

\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)