Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Thanh Huyền - Toán lớp 7 - Học toán với OnlineMath
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwweeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrttttttttttttttttttttttttttttttttttttttttttttttttyyyyyyyyyyyyyyyyyyyyyu
vì x - y - z = 0 nên x = y + z
Xét tổng A + B = xyz - xy2 - xz2 + y3 + z3
= ( y + z ) . yz - ( y + z ) . y2 - ( y + z ) . z2 + y3 + z3
= y2z + yz2 - y3 - y2z - yz2 - z3 + y3 + z3 = 0
Vậy ...
\(A=xyz-xy^2-xz^2=-x\left(y^2-yz+z^2\right)\)
\(B=y^3+z^3=\left(y+z\right)\left(y^2-yz+z^2\right)\)
Lại có \(x-y-z=0\)\(\Leftrightarrow\)\(y+z=x\)
\(\Rightarrow\)\(B=\left(y+z\right)\left(y^2-yz+z^2\right)=x\left(y^2-yz+z^2\right)\) là số đối của \(A\) ( đpcm )
Chúc bạn học tốt ~
Từ x - y - z = 0 => x = y + z
Xét tổng
A + B = (xyz - xy2 - xz2) + (y3 + z3)
= xyz - xy2 - xz2 + y3 + z3
= (y + z)yz - (y + z)y2 - (y + z)z2 + y3 + z3
= y2z + yz2 - y3 - zy2 - yz2 - z3 + y3 + z3
= 0
Vậy A và B là hai đa thức đối nhau
Ta có: x - y - z = 0 suy ra x = y + z (1)
Thay (1) vào biểu thức A ta được:
A = \(\left(x+y\right)\left(zy-y^2-z^2\right)\)
= \(y^2z-y^3-yz^2+yz^2-y^2z-z^3\)
= \(-\left(y^3+z^3\right)\)
= - B
Vậy A và B là hai đa thức đối nhau.