Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
1/
( a + b )3 + ( a - b )3 - 6ab2 < đã sửa >
= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3 - 6ab2
= 2a3
2/
A = x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y
Dấu "=" xảy ra khi x = 1 ; y = 2
=> MinA = 1 <=> x = 1 ; y = 2
B = 2x2 + 8x + 10 = 2( x2 + 4x + 4 ) + 2 = 2( x + 2 )2 + 2 ≥ 2 ∀ x
Dấu "=" xảy ra khi x = -2
=> MinB = 2 <=> x = -2
C = 25x2 + 3y2 - 10x + 11 = ( 25x2 - 10x + 1 ) + 3y2 + 10 = ( 5x - 1 )2 + 3y2 + 10 ≥ 10 ∀ x, y
Dấu "=" xảy ra khi x = 1/5 ; y = 0
=> MinC = 10 <=> x = 1/5 ; y = 0
D = ( x - 3 )2 + ( x - 11 )2
Đặt t = x - 7
D = ( t + 4 )2 + ( t - 4 )2
= t2 + 8t + 16 + t2 - 8t + 16
= t2 + 32 ≥ 32 ∀ t
Dấu "=" xảy ra khi t = 0
=> x - 7 = 0 => x = 7
=> MinD = 32 <=> x = 7
Câu 1: (2x+y)(y-2x)+4x2=y2-4x2+4x2=y2
Với y=10 giá trị biểu thức trên là 102=100
Câu 2:
a. xy-11x=x.(y-11)
b. x2+4y2+4xy-16=(x2+4xy+4y2)-16
=(x+2y)2-16=(x+2y+4)(x+2y-4)
a, Với x-y=7 thì
\(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2.7+37\)
\(=49+14+37=100\)
Vậy A=100
b, Với x+2y=5 thì
\(B=x^2+4y^2-2x+10+4xy-4y\)
\(=x^2+4y^2-2x+2x+4y+4xy-4y=x^2+4y^2+4xy\)
\(=x^2+2.x.2y+\left(2y\right)^2=\left(x+2y\right)^2=5^2=25\)
Vậy B=25
Ta có: x - y = 7 ⇔ x = 7 + y
⇒ A = x ( x+2) + y ( y-2) - 2xy +37
⇔ A = (7 + y)( y+9) + y ( y-2) - 2(7+ y)y +37
⇔ A = 7y + 63 + y2 + 9y + y2 - 2y - 14y -2y2 +37
⇔ A = 63 + 37 = 100
Ta có: x+ 2y = 5 ⇔ x = 5 - 2y
⇒ B = x2 +4y2 - 2x +10 + 4xy - 4y
⇔ B = x2 + 4xy + 4y2 - 2x +10 - 4y
⇔ B = (x + 2y)2 - 2(x -5 + 2y)
⇔ B = (5 - 2y + 2y)2 - 2(5 - 2y -5 + 2y)
⇔ B = 52 = 25
\(P=x^2+4xy+4y^2-4xy-4y^2+2x+3\)
\(=x^2+2x+3\)