Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2\left(y-1\right)-4\left(y-1\right)\\ =\left(y-1\right)\left(x^2-4\right)=\left(y-1\right)\left(x-2\right)\left(x+2\right)\)
a) 3x3-2x2+2 chia x+1= 3x2-5x+5 dư -3 b) -3 chia hết x+1 vậy chon x =2
1)
a) \(-7x\left(3x-2\right)\)
\(=-21x^2+14x\)
b) \(87^2+26.87+13^2\)
\(=87^2+2.87.13+13^2\)
\(=\left(87+13\right)^2\)
\(=100^2\)
\(=10000\)
2)
a) \(x^2-25\)
\(=x^2-5^2\)
\(=\left(x-5\right)\left(x+5\right)\)
b) \(3x\left(x+5\right)-2x-10=0\)
\(\Leftrightarrow3x\left(x+5\right)-\left(2x-10\right)=0\)
\(\Leftrightarrow3x\left(x+5\right)-2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy..........
3)
a) \(A:B=\left(3x^3-2x^2+2\right):\left(x+1\right)\)
Vậy \(\left(3x^3-2x^2+2\right):\left(x+1\right)=\left(3x^2-5x-5\right)+7\)
b)
Để \(A⋮B\Rightarrow7⋮\left(x+1\right)\)
\(\Rightarrow\left(x+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)
Vì x là số nguyên nên x=0 ; x=6 thì \(A⋮B\)
C1
a) -7x(3x-2)=-21x^2+14x
b) 87^2+26.87+13^2=87^2+2.13.87+13^2=(87+13)^2=100^2
C2
a) (x-5)(x+5)
b)3x(x+5)-2(x+5)=(3x-2)(x+5)=0
\(\Rightarrow\left[\begin{array}{nghiempt}3x-2=0\\x+5=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{2}{3}\\x=-5\end{array}\right.\)
Vậy S={-5;2/3}
C3:
a)3x^3-2x^2+2=(x+1)(3x^2-5x-5)-3
b) Để A chia hết cho B=> x+1\(\inƯ\left(-3\right)\)
\(\Rightarrow\begin{cases}x+1=3\\x+1=-3\\x+1=1\\x+1=-1\end{cases}\)\(\Rightarrow\begin{cases}x=2\\x=-4\\x=0\\x=-2\end{cases}\)
2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)
\(\Leftrightarrow a=-1\)
Vậy ...
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
1: \(\dfrac{A}{B}=\dfrac{2x^4+4x^3-x^3-2x^2-2x^2-4x+x+2}{x+2}\)
\(=2x^3-x^2-2x+1\)
1) \(\dfrac{A}{B}=\dfrac{2x^4+4x^3-x^3-2x^2-4x+x+2}{x+2}\)
=\(2x^3-x^2-2x+1 \)
2) \(2x^3-x^2-2x+1\)
= \(\left(2x^3-2x\right)-\left(x^2-1\right)\)
= \(2x\left(x^2-1\right)-\left(x^2-1\right)\)
=\(\left(x^2-1\right)\left(2x-1\right)\)