K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

giúp mình với các bạn.....

5 tháng 2 2020

a) Ta có : \(D=\frac{3n+5}{3n+2}\)

Để D là phân số \(\Leftrightarrow3n+2\ne0\Leftrightarrow n\ne-\frac{2}{3}\)

b) Mình nhớ mình làm rồi

c) Để D max \(\Leftrightarrow\frac{3n+5}{3n+3}=1+\frac{2}{3n+3}\) max \(\Leftrightarrow\frac{2}{3n+3}max\Leftrightarrow3n+3min\)

5 tháng 2 2020

mấy bạn giúp mình với chiều nay nộp rồi

5 tháng 2 2020

Đề bổ sung thêm \(n\in Z\) :

Ta có : \(D=\frac{3n+5}{3n+2}=\frac{3n+2+3}{3n+2}=1+\frac{3}{3n+2}\)

Để \(D\inℤ\Leftrightarrow\frac{3}{3n+2}\inℤ\)

\(\Leftrightarrow3⋮3n+2\) ( \(n\inℤ\) ) hay \(3n+2\inƯ\left(3\right)\)

\(\Rightarrow3n+2\in\left\{1,-1,3,-3\right\}\)

\(\Leftrightarrow n\in\left\{-\frac{1}{3},-1,\frac{1}{3},-\frac{5}{3}\right\}\) mà  \(n\inℤ\)

\(\Rightarrow n=-1\)

Vậy \(n=-1\) để D là số nguyên.

25 tháng 1 2019

a)  đế  C và D cùng tồn tại thì:

\(\hept{\begin{cases}n-1\ne0\\n+1\ne0\end{cases}}\)  <=>  \(\hept{\begin{cases}n\ne1\\n\ne-1\end{cases}}\)

Vậy....

b)   (n là số nguyên)  

để C là số nguyên thì:   2 chia hết cho n - 1

hay n - 1 thuộc Ư(2) = {-2; -1; 1; 2}

=> n = {-1; 0; 2; 3}

Do n # -1   nên   n = { 0; 2; 3}

n = 0 thì D = 4  (t/m)

n = 2 thì D = 2  (t/m)

n = 3 thì D = 7/4  (loại)

Vậy n = {0; 2}  thì C và D đều nguyên

25 tháng 1 2019

a) C và D cùng tồn tại khi \(n\ne\pm1\)

b) Để C là số nguyên

=> 2 chia hết cho n - 1

=> n - 1 thuộc Ư(2) ={1;-1;2;-2}

nếu n - 1 = 1 => n = 2

n - 1 = -1 => n = 0

n-1 = 2 => n = 3

n -1 = - 2 => n = -1 

Để \(D=\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=1+\frac{3}{n+1}\)là số nguyên

=> 3 chia hết cho n + 1

=> n + 1 thuộc Ư(3)={1;-1;3;-3}

nếu n + 1 = 1 => n = 0 (TM)

n + 1 = - 1 => n = - 2 (Loại)

n + 1 = 3 => n = 2 (TM)

n + 1 = - 3 => n = - 4 (Loại)

KL: n = 0 hoặc n  = - 2 thì C và D đều là số nguyên

10 tháng 3 2017

\(N=\frac{3n+2}{n+1}=\frac{3n+3-1}{n+1}=\frac{3\left(n+1\right)-1}{n+1}=3-\frac{1}{n+1}\)

Để \(N=1+\frac{1}{n+1}\) đạt GTLN <=> \(\frac{1}{n+1}\) đạt GTLN

=> n + 1 là số nguyên dương nhỏ nhất => n + 1 = 1 => n = 0

=> \(N_{max}=\frac{3.0+2}{0+1}=2\)

Vậy GTLN của \(N\) là 2 <=> n = 0

10 tháng 3 2017

Cảm ơn .

30 tháng 4 2016

mk giải rồi đó kbạn hoặc k cho mk nha

30 tháng 4 2016

Gọi phân số đó là A

Để Alà số nguyên:

=>3n+5chia hết n+1

=>(3n+5)-(n+1) chia hết  n+1

=>(3n+5)-(3.(n+1)) chia hếtn+1

rồi làm tiếp

14 tháng 7 2018

\(a,\)Để A là phân số thì 5 không chia hết cho n

\(b,\)Để A nguyên => \(5⋮n\)

\(\Rightarrow n\in\left(1;-1;5;-5\right)\)

Vậy ...................

14 tháng 7 2018

a.điều kiện của n để A là phân số suy ra :n phải khác 0