Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng \(\frac{7}{12}<\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{40}<\frac{5}{6}\)
b.Đặt A = \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+....+\frac{1}{100^2}\) < \(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{99.100}\)= \(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{100}\)= \(\frac{1}{4}-\frac{1}{100}=\frac{25}{100}-\frac{1}{100}=\frac{24}{100}<\frac{25}{100}=\frac{1}{4}\)(1)
A > \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)= \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)(2)
Từ (1) và (2) =>\(\frac{1}{6}\) < A < \(\frac{1}{4}\)
hãy nhìn kĩ hihi
vì mỗi p/số của M đều bé hơn 1,áp dụng quy tắc thứ 7 để so sánh có
1/2<1+1/2+1=2/3(xảy ra khi p/số<1 như trên)
3/4<3+1/4+1=4/5
.......
99/100<99+1/100+1=100/101
tích chúng sẽ bé hơn
2/3.4/5.6/7......100/101=N
Vậy M<N
M.N=1/2.2/3.3/4.......99/100.100/101
tử và mẫu xuất hiện số đối nhau,khử đi còn
M.N=1/101
Dựa vào câu a,b có
M.M<M.N(vì N>M)
M.M<1/101
dpcm là M<1/10
M.M<1/10.1/10=1/100
mà M^2<1/101<1/100=1/10^2
=>M<1/10
hơi vắt óc nên xin olm tích cho nha
chúc học tốt