Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
b: NH=PH=2cm
=>\(MH=\sqrt{5^2-2^2}=\sqrt{21}\simeq4,6\left(cm\right)\)
c: Xét ΔMNI và ΔMPI có
MN=MP
góc NMI=góc PMI
MI chung
=>ΔMNI=ΔMPI
a: Xét ΔMHN vuông tại H và ΔMHP vuông tại H có
MN=MP
MH chung
=>ΔMHN=ΔMHP
b: ΔMHN=ΔMHP
=>HN=HP
=>H là trung điểm của NP
c: ΔMNH=ΔMPH
=>góc NMH=góc PMH
=>MH là phân giác của góc NMP
a: Xét ΔNMK co
NE vừa là đường cao, vừa là phân giác
=>ΔNMK cân tại N
=>NM=NK
Xét ΔNMD và ΔNKD có
NM=NK
góc MND=góc KND
ND chung
=>ΔMND=ΔKND
=>góc NKD=90 độ
=>DK vuông góc NP
b: Xét ΔNKM có
MH,NE là đường cao
MH cắt NE tại I
=>I là trực tâm
=>KI vuông góc MN
=>KI//MP
Xét ΔMNK có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMNK cân tại M
Đề cs sai k bạn ???
+) Xét \(\Delta\)MNP vuông tại M
\(\Rightarrow NP^2=MN^2+MP^2\) ( đính lsi Py-ta-go)
\(\Rightarrow NP^2=10^2+10^2\)
\(\Rightarrow NP^2=100+100=200\)
\(\Rightarrow NP=\sqrt{200}\) ( cm) ( do NP > 0 )
Bạn xem lại đề đi nhé. Kiên nè
Cho Δ MNP cân tại M. Kẻ MH ⊥ NP (H ∈ NP) a, Chứng minh Δ MHN = Δ MHP. Từ đó suy ra H là trung điểm của NP. b, Kẻ HD ⊥ MN (D ∈ MN), HE ⊥ MP (E ∈ MP). Chứng minh tam giác HDE là tam giác cân c, Chứng minh DE ⊥ MH d,chứng minh de,pd và mh cùng đi qua 1 điểm