K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2019

a) xét \(\Delta ABM\)và \(\Delta ACM\), có:
      \(AB=AC\)(\(\Delta ABC\)cân tại A)
      \(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
      \(BM=CM\)(M là trung điểm của BC)
Do đó:   \(\Delta ABM=\Delta ACM\)\(\left(c.g.c\right)\)

b) Vì \(\Delta ABM=\Delta ACM\)(câu a)
 \(\Rightarrow\widehat{BMA}=\widehat{CMA}\)(2 góc tương ứng)
Mà \(\widehat{BMA}+\widehat{CMA}=180^0\)(kề bù)
 \(\Rightarrow\widehat{BMA}=\widehat{CMA}=\frac{180^0}{2}=90^0\)
Xét \(\Delta ABM,\)vuông tại M (\(\widehat{BMA}=90^0\))
Theo định lí Py-ta-go, ta có:
\(AB^2=BM^2+AM^2\)
hay \(5^2=BM^2+\text{4^2}\)
\(\Rightarrow BM^2=25-16\)
     \(BM^2=9\)
\(\Rightarrow BM=3\left(cm\right)\)
Vì M là trung điểm của BC (GT)
\(\Rightarrow BM=CM=\frac{BC}{2}\)
\(\Rightarrow2BM=BC\)
 hay \(2\times5=BC\)
\(\Rightarrow BC=10\left(cm\right)\)

câu C mk ko bt làm
Mk cũng ko chắc đâu nha!!!

~Good luck~
   

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM vừa là đường phân giác vừa là đường cao

b: Xét ΔABC có 

AM là đường trung tuyến

AO=2/3AM

Do đó: O là trọng tâm của ΔABC

=>BO là đường trung tuyến ứng với cạnh AC

hay E là trung điểm của AC

c: Ta có: O là trọng tâm của ΔABC

mà CO cắt BA tại F

nên F là trung điểm của AB

Xét ΔABE và ΔACF có

AB=AC
\(\widehat{BAE}\) chung

AE=AF

Do đó: ΔABE=ΔACF

Suy ra: BE=CF

29 tháng 6 2020

a, xét tg BEM và tg CFM có : ^CFM = ^BEM = 90 

^ABC = ^ACCB do tg ABC cân tại A (gt)

CM = BM do M là trung điểm của BC (gt)

=> tg BEM = tg CFM (ch-gn)                                  (1)

b, (1) => CF = BE (đn)

AB = AC do tg ABC cân tại A (gt)

CF + AF = AC

BE + AE = AB

=> AF = AE 

29 tháng 6 2020

                                                Bài giải

A B C M E F G

a, Xét 2 tam giác vuông BME và CMF có :

MB = MC ( AM là đường trung tuyến ) : cạnh huyền

\(\widehat{B}=\widehat{C}\) ( tam giác ABC cân ) : góc nhọn

\(\Rightarrow\text{ }\Delta BME =\Delta CMF ( ch-gn ) \) ( 1 )

b, Từ ( 1 ) => BE = CF ( 2 cạnh tương ứng )

Mà AB = AE + BE

      AC = AF + CF

Mà BE = CF => AE = AF

c, Ta có :

\(AG=BG=\frac{2}{3}AM\text{ }\Rightarrow\text{ }\frac{AG+BG}{2}=\frac{\frac{2}{3}AM+\frac{2}{3}AM}{2}=\frac{\frac{4}{3}AM}{2}=\frac{3}{2}AM>BG\)

\(\Rightarrow\text{ }ĐPCM\)

11 tháng 12 2016

Ta có hình vẽ:

A B C M E F K

 

a/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

=> tam giác ABM = tam giác ACM (c.c.c)

b/ Ta có: tam giác ABM = tam giác ACM (câu a)

=> \(\widehat{B}\)=\(\widehat{C}\)(2 góc tương ứng)

Ta có: tam giác ABM = tam giác ACM (câu a)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)(2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\)=1800

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900

=> AM \(\perp\)BC (đpcm)

c/ Xét tam giác AEF và tam giác CKF có:

AF = FC (GT)

\(\widehat{AFC}\)=\(\widehat{CFK}\)(đối đỉnh)

EF = FK (GT)

=> tam giác AEF = tam giác CKF (c.g.c)

=> CK = AE (2 cạnh tương ứng)

Ta có: \(\begin{cases}AE=EB=\frac{1}{2}AB\\AE=CK\end{cases}\)\(\Rightarrow CK=\frac{1}{2}AB\)hay AB/2 theo đề bài

d/ Ta có: tam giác AEF = tam giác CKF (đã chứng minh trên)

=> \(\widehat{EAF}\)=\(\widehat{FCK}\) (2 góc tương ứng)

Mà 2 góc hay đang ở vị trí so le trong

nên AE // CK hay EB // CK (vì A,E,B thẳng hàng)

Ta có: EB // CK => \(\widehat{BEC}\)=\(\widehat{ECK}\) (so le trong) (1)

-Ta có: BE = CK = AE (2)

-Ta có: EC: cạnh chung (3)

Từ (1),(2),(3) => tam giác BEC = tam giác ECK

=> \(\widehat{KEC}\)=\(\widehat{ECB}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong nên

=> EK // BC (đpcm)

G
12 tháng 12 2016

a) Xet tam giac ABM va tam giac ACM ,co:

AB=AC(gt)

BM=MC(do M la td cua BC)

AM la canh chung

=> tam giac ABM=tam giac ACM ( c_c_c)

b) tuong tu phan a

.......

=> goc B = goc A( 2 goc tuong ung)

 

 

1 tháng 2 2019

tu ve hinh :

a; b, xet tamgiac AMF va tamgiac AME co : AM chung

goc AFM = goc AEM = 90 do MF | AC va ME | AB (gt)

goc FAM = goc EAM do AM la phan giac cua goc BAC (gt)

=> tamgiac AMF = tamgiac AME (ch - gn)               

=> AE = AF (dn)             (1)

AB = AC do tamgiac ABC can tai A (gt)

AE + EB = AB

AF + FC = AC

=> EB = FC 

xet tamgiac BEM va tamgiac CFM co : goc B = goc C do tamgiac ABC can tai A (gt) 

goc MEB = goc MFC do ...

=>  tamgiac BEM = tamgiac CFM  (cgv - gnk)

=> MB = MC

c, (1) => tamgiac AEF can tai E (dn)

=> goc AEF = (180 - goc BAC) : 2

tamgiac ABC can tai A (gt) => goc B = (180 - goc BAC) : 2

=> goc AEF = goc B ma 2 goc nay dong vi 

=> EF // BC (dh)

1 tháng 2 2019

                          Giải

Bạn tự vẽ hình

a; b, Xét \(\Delta AMF\) va \(\Delta AME\) có : AM chung

\(\widehat{AFM}=\widehat{AEM}=90^0\)  do MF\(\perp\)AC va ME\(\perp\)AB 

\(\widehat{FAM}=\widehat{EAM}\)do AM la phân giác của  \(\widehat{BAC}\)

\(\Rightarrow\Delta AFM=\Delta AME\)             

\(\Rightarrow AE=AF\)          (1)

AB = AC do \(\Delta ABC\) cân tại A 

AE + EB = AB

AF + FC = AC

\(\Rightarrow\) EB = FC 

Xét \(\Delta BEM\) và \(\Delta CFM\) có : \(\widehat{B}\)\(\widehat{C}\) do \(\Delta ABC\) cân tại A 

\(\Rightarrow\widehat{MEB}=\widehat{MFC}\)

\(\Rightarrow\Delta BEM=\Delta CFM\)

\(\Rightarrow\) MB = MC

c, Từ (1) suy ra \(\Delta AEF\)cân tại E

\(\Rightarrow\widehat{AEF}=\left(180-\widehat{BAC}\right)\div2\)

\(\Delta ABC\) cân tại A  \(\Rightarrow\)\(\widehat{B}\)= (180 - \(\widehat{BAC}\)) : 2

\(\Rightarrow\widehat{AEF}=\widehat{B}\) mà hai góc này đồng vị

\(\Rightarrow EF//BC\)

18 tháng 2 2016

Vẽ hình ra nhé : ∆ 

19 tháng 4 2023

MN trung tuyến lúc nào v