Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0
Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d
Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)
\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)
Thay vào pt d' ta được:
\(a+a-4=0\Rightarrow a=2\)
\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)
\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)
2.
Gọi \(\overrightarrow{u}=\left(a;b\right)\)
Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d
Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)
Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)
Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)
Ta có:
\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)
\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)
Đường tròn \(\left(C\right)\) tâm \(A\left(8;3\right)\) bán kính \(R=\sqrt{10}\)
Gọi B là tâm của (C') thì B là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\)
\(\Rightarrow B\left(13;10\right)\)
Phương trình (C'):
\(\left(x-13\right)^2+\left(x-10\right)^2=10\)
vì \(\overrightarrow{W}\) có giá vuông góc với đường thẳng \(d\) nên ta đặc \(\overrightarrow{W}\left(2k;-3k\right)\)
theo công thức ta có : \(\left\{{}\begin{matrix}x'=x+2k\\y'=y-3k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=x'-2k\\y=y'+3k\end{matrix}\right.\)
\(\Rightarrow2\left(x'-2k\right)-3\left(y+3k\right)+3=0\)
\(\Leftrightarrow2x'-4k-3y'-9k+3=0\Leftrightarrow2x'-3y'-13k+3\left(1\right)\)
để \(\left(1\right)\) là đường thẳng \(d\) thì : \(-13k+3=-5\Leftrightarrow k=\dfrac{8}{13}\)
\(\Rightarrow\overrightarrow{W}\left(\dfrac{16}{13};-\dfrac{24}{13}\right)\) vậy \(\overrightarrow{W}\left(\dfrac{16}{13};-\dfrac{24}{13}\right)\)
Gọi `A(0;1)` và `B(1;3)` là 2 điểm thuộc `\Delta`
`T_(\vec v): \Delta -> \Delta'`
`<=> T_(\vec v): A(0;1) -> A'(3;0) ; B(1;3) -> B'(4;2)`
`=> \vec(A'B') (1;2)`
`=> \Delta' : 1(x-3)+2(y-0)=0 <=> x+2y-3=0`
`(C)` có: `I(1;-2)` và `R=\sqrt6 =R'`
`T_(\vec v): (C) -> (C') => T_(\vecv): I (1;-2) -> I'(4;-3)`
`=> (C'): (x-4)^2 +(y+3)^2=6`
- Lâu không làm, không biết có đúng khum...