K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

\(\text{Đặt }A=1+3+3^2+...+3^{2015}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2013}+3^{2014}+3^{2015}\right)\)

\(=\left(1+3+9\right)+3^3.\left(1+3+9\right)+...+3^{2013}.\left(1+3+9\right)\)

\(=13+3^3.13+...+3^{2013}.13\)

\(=13.\left(1+3^3+...+3^{2013}\right)\text{chia hết cho 13}\)

=> A chia hết cho 13 (đpcm).

5 tháng 1 2016

Bạn nhóm 3 số lại 

29 tháng 10 2020

\(Y=1+3+3^2+3^3+.......+3^{98}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.........+\left(3^{96}+3^{97}+3^{98}\right)\)

\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+......+3^{96}.\left(1+3+3^2\right)\)

\(=\left(1+3+9\right)+3^3.\left(1+3+9\right)+.........+3^{96}.\left(1+3+9\right)\)

\(=13+3^3.13+.......+3^{96}.13\)

\(=13.\left(1+3^3+.......+3^{96}\right)⋮13\)( đpcm )

29 tháng 10 2020

Y = 1 + 3 + 32 + 33 + ... + 398

= ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 396 + 397 + 398 )

= 13 + 33( 1 + 3 + 32 ) + ... + 396( 1 + 3 + 32 )

= 13 + 33.13 + ... + 396.13

= 13( 1 + 33 + ... + 396 ) chia hết cho 13 ( đpcm )

DD
25 tháng 10 2021

\(3+3^2+3^3+...+3^{2012}\)

\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)

\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)

\(=40\left(3+...+3^{2009}\right)⋮40\)

26 tháng 10 2021

rrrrr

22 tháng 12 2015

Tổng trên có số số hạng là

(2015-0):1+1=2016

Nhóm 3 số hạng liên tiếp lại với nhau ta được

(1+3+3^2)+...+(3^2013+3^2014+3^2015)

(1+3+3^2)+.......+3^2013(1+3+3^2)

13+......+3^2013.13 chia hết cho 13

vậy tổng này chia hết cho 13

5 tháng 10 2015

                                                    Giải

Bài 1:

a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)

                =12+32x (3+32)+.......+358 x (3+32)=12+3x 12+..........+358 x 12

                =12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)

Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.

=> Tổng này chia hết cho 4.

Bài 2:

Ta có: 12a chia hết cho 12; 36b chia hết cho 12.

=> tổng này chia hết cho 12.

Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)

Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.

=> Tổng này chia hết cho 5.

 

10 tháng 12 2015

= (1 + 3 + 3^2) + ....... + (3^2013 + 3^2014+  3^2015)

=1.13 + ...... + 3^2013.13

=13(1 + 3^3 + ... + 3^2013) 

=> chia hết cho 13

AH
Akai Haruma
Giáo viên
22 tháng 6 2019

Lời giải:

\(B=3+3^3+3^5+...+3^{1991}=(3+3^3+3^5)+(3^7+3^9+3^{11})+....+(3^{1987}+3^{1989}+3^{1991})\)

\(=3(1+3^2+3^4)+3^7(1+3^2+3^4)+....+3^{1987}(1+3^2+3^4)\)

\(=(1+3^2+3^4)(3+3^7+3^{13}+...+3^{1987})\)

\(=91(3+3^7+3^{13}+...+3^{1987})\)

\(=13.7(3+3^7+3^{13}+.....+3^{1987})\vdots 13\) (đpcm)

---------------------

\(B=(3+3^3+3^5+3^7)+....+(3^{1985}+3^{1987}+3^{1989}+3^{1991})\)

\(=3(1+3^2+3^4+3^6)+....+3^{1985}(1+3^2+3^4+3^6)\)

\(=(1+3^2+3^4+3^6)(3+...+3^{1985})=820(3+...+3^{1985})=41.20(3+...+3^{1985})\vdots 41\) (đpcm)

2 tháng 7 2019

1) Ta có : 11a + 22b + 33c

      = 11a + 11.2b + 11.3c

      = 11.(a + 2b + 3c) \(⋮\)11

=> 11a + 22b + 33c \(⋮\)11

2) 2 + 22 + 23 + ... + 2100

= (2 + 22) + (23 + 24) + ... + (299 + 2100)

= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)

= 6 + 22.6 + ... + 298.6

= 6.(1 + 22 + .. + 298)

= 2.3.(1 + 22 + ... + 298\(⋮\)3

=> 2 + 22 + 23 + ... + 2100 \(⋮\)3

3) Ta có:  abcabc = abc000 + abc

 = abc x 1000 + abc 

 = abc x (1000 + 1)

= abc x 1001 

= abc .7. 13.11 (1)

= abc . 7 . 13 . 11 \(⋮\)

=> abcabc \(⋮\)7

=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11

     => abcabc \(⋮\)11

=> Từ (1) ta có :  abcabc = abc . 7.11.13 \(⋮\)           13

    => => abcabc \(⋮\)13

2 tháng 7 2019

1

.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\) 

\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\) 

hc tốt