K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2015

ta co (a+b+c)2=a2+b2+c2+2ab-2bc-2ac

                     =a2+b2+[c2+2(ab-bc-ac)]

                     =a2+b2

28 tháng 6 2015

a + b +c = 9

( a+b+c )^2 = 9^2

a^2 + b^2 +c^2 + 2ab+ 2bc +2ac = 81

53 + 2(ab+bc+ac) = 81

         2(ab+bc+ac)  = 81 - 53

         2(ab +bc +ac) = 28

            ab + bc +ac  = 14

28 tháng 6 2015

a2 + b2 + c2 = 53 
Ta có

(a+b+c)2=a2+b2+c2 + 2ab+2ac+2bc = 92 (1) 
thay a2 + b2 + c2 = 53 vào (1)

=> 53 +2ab+2ac+2bc = 92 

=>2ab+2ac+2bc = 92 - 53 
=> 2ab+2ac+2bc = 28 
=> 2.(ab+bc+ca)=28

=> ab+bc+ca = 28:2 = 14 

8 tháng 7 2019

\(\left(a-b\right)\left(a^2+ab+b^2\right)=a^3-b^3\)

\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)

Khi đó VT trở thành:

\(a^3-b^3-a^3-b^3=-2b^3\)

8 tháng 7 2019

TL:

\(\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a+b\right)\left(a^2-ab+b^2\right)\)

 \(=a^3-b^3-a^3-b^3\) 

\(=-2b^3\) 

=> đpcm

3 tháng 7 2015

Do \(a^2+b^2+c^2=5\Rightarrow a^2,b^2,c^2\le5\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le\sqrt{5}\)

\(\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le2\)

\(\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\in\left\{0;1;2\right\}\)

Mà \(a+b+c=3\) và \(a^2+b^2+c^2=5=0^2+1^2+2^2\)

\(\text{nên }\left(a,b,c\right)\in\left\{\left(0;1;2\right);\left(0;2;1\right);\left(1;0;2\right);\left(1;2;0\right);\left(2;1;0\right);\left(2;0;1\right)\right\}\)

Với mỗi cặp như vậy, \(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)=\left(0+2\right)\left(1^2+2\right)\left(2^2+2\right)=36=6^2\)

là số chính phương. 

 

ban oi a^2+b^2+c^2= a^2+b^2+c^2 là chuyện đương nhiên mà bạn

22 tháng 12 2019

quên là (a+b+c)2=a2+b2+c2    xin lỗi nha

a/x +b/y +c/z =0 ->ayz+bxz+cxz=0

x/a + y/b + z/c=1 ->(x/a +y/b +z/c)^2=1

x^2/a^2 + y^2/b^2 + z^2/c^2 +2(xy/ab +yz/bc +xz/ac)=1

x^2/a^2 + y^2/b^2 + z^2/c^2 =1- 2* ayz+bxz+cxz/abc=1-2*0=1-0=1 =>ĐPCM

k hộ mik nha

28 tháng 5 2019

#)Giải :

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1-2\frac{ayz+bxz+cxy}{abc}=1-2.0=1\left(đpcm\right)\)

            #~Will~be~Pens~#

5 tháng 10 2019

Có ab + bc + ca = 0

=> 2ab + 2bc + 2ca = 0

Lại có a2 + b2 + c2 = 0             (1)        

=> a2 + 2ab + b2 + 2bc + c2 + 2ca = 0

=> (a + b + c)2 = 0

=> a + b + c = 0                        (2)

Từ (1) và (2) => a = b = c (đpcm)

5 tháng 10 2019

Ta có: \(\hept{\begin{cases}a^2+b^2+c^2=0\\ab+bc+ca=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2a^2+2b^2+2c^2=0\\2ab+2bc+2ca=0\end{cases}}\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0;\forall a,b,c\\\left(b-c\right)^2\ge0;\forall a,b,c\\\left(c-a\right)^2\ge0;\forall a,b,c\end{cases}}\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0;\forall a,b,c\)

Do đó \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)

\(\Leftrightarrow a=b=c\left(đpcm\right)\)

Bài làm :

 Bình phương hai vế của a + b + c = 0 ta được :

\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)   ( 1 )

Bình phương hai vế của ( 1 ) ta được :

\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)  ( vì a + b + c = 0 nên 2abc . 0 = 0 )

=> đpcm 

Phần còn lại tương tự bạn tự làm nhé

Học tốt

22 tháng 9 2020

Ta có :

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)( 1 )

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)( 2 )

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)( 3 )

Ta lại có : 

\(\left(ab+bc+ca\right)^2\)

\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\)

\(=a^2b^2+b^2c^2+c^2a^2+2abc.0\)

\(=a^2b^2+b^2c^2+c^2a^2\)( 4 )

Thay ( 4 ) vào ( 2 ) ta được :

\(a^4+b^4+c^4+2\left(ab+bc+ca\right)^2=4\left(ab+bc+ca\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)( 5 )

Từ ( 1 ) => \(ab+bc+ca=\frac{-a^2-b^2-c^2}{2}\)

\(\Rightarrow2\left(ab+bc+ca\right)^2=\frac{\left(a^2+b^2+c^2\right)^2}{2}\)( 6 )

Từ ( 3 ) ; ( 5 ) và ( 6 ) => Đpcm

21 tháng 3 2019

\(4.\)

\(a.A=5-8x-x^2\)

\(=-\left(16+8x+x^2\right)+21\)

\(=-\left(4+x\right)^2+21\le21\)

\(A_{max}=21\)

Dấu '='xảy ra khi \(x=-4\)

\(b.B=5-x^2+2x-4y^2-4y\)

\(=-\left(1-2x+x^2\right)-\left(4+4y+4y^2\right)+10\)

\(=-\left(1-x\right)^2-\left(2+2y\right)^2+10\le10\)

\(B_{max}=10\)

Dấu '=' xảy ra khi \(x=1;y=-1\)

\(5.\)

\(a.\) Ta có:\(a^2+b^2+c^2=ab+bc+ca\)

              \(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

              \(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

              \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

              \(\Leftrightarrow a-b=0\Leftrightarrow a=b\left(1\right)\)

              hay\(b-c=0\Leftrightarrow b=c\left(2\right)\)

             hay\(c-a=0\Leftrightarrow c=a\left(3\right)\)

Từ \(\left(1\right),\left(2\right)\)\(\left(3\right)\)suy ra:\(a=b=c\left(đpcm\right)\)

\(b.a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)

hay\(b+2=0\Leftrightarrow b=-2\)

hay\(2c-2=0\Leftrightarrow c=1\)

V...

^^