K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 2 2019

Với các giá trị nguyên của \(x\ne-1\), để A nguyên thì \(\left(x^5+1\right)⋮\left(x^3+1\right)\)

\(\Leftrightarrow\left(x^5+x^2-\left(x^2-1\right)\right)⋮\left(x^3+1\right)\)

\(\Leftrightarrow\left(x^2\left(x^3+1\right)-\left(x^2-1\right)\right)⋮\left(x^3+1\right)\)

\(\Leftrightarrow\left(x^2-1\right)⋮\left(x^3+1\right)\)

\(\Leftrightarrow\left(x-1\right)⋮\left(x^2-x+1\right)\)

\(\Rightarrow x\left(x-1\right)⋮\left(x^2-x+1\right)\)

\(\Leftrightarrow\left(x^2-x+1-1\right)⋮\left(x^2-x+1\right)\)

\(\Leftrightarrow1⋮\left(x^2-x+1\right)\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=1\\x^2-x+1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-1\right)=0\\\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

13 tháng 4 2015

n4 + 4 = (n2)2 + 4.n2 + 4 - 4.n2​  = (n2 + 2)2 - (2n)2 = (n2 + 2 - 2n)(n2 +2 + 2n) = [(n -1)2 + 1].[(n + 1)2 +1] 

Nếu n = 1 thì n4 + 4 = 1.5 = 5 là số nguyên tố

Nếu n>1 thì n4 + 4 là tích của hai số lớn hơn 1 là [(n -1)2 + 1]. và [(n + 1)2 +1] . Khi nó nó không phải là số nguyên tố.

ĐS: n = 1

5 tháng 11 2018

Đặt  \(A=4x^4+1\)

\(=\left(2x^2\right)^2+2.2x^2.1+1^2-4x^2\)

\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)

\(=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)

Điều kiện cần để A là số nguyên tố:

\(\orbr{\begin{cases}2x^2-2x+1=1\\2x^2+2x+1=1\end{cases}\Rightarrow}\hept{\begin{cases}2x\left(x-1\right)=0\\2x\left(x+1\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}\left(x\in N\right)}\)

Nếu x = 0 thì A = 1 không là số nguyên tố (loại)

Nếu x = 1 thì A = 5 là số nguyên tố (thỏa mãn)

Vậy x = 1

P= (x+3)/(x-3)

=> P= (x-3+6)/(x-3)

=> P= (x-3)/(x-3) + 6/(x-3)

=> P= 1 + 6/(x-3)

Ta có x-3>0 vì mọi số nguyên tố đều > 1.

=> 6/(x-3) thuộc N*.

=> x thuộc {4;5;6;9}

Thử các trường hợp ta có đáp số x thuộc {4;6;9} để P nguyên tố.

21 tháng 1 2018

Ta có: \(P=\frac{x+3}{x-3}=\frac{x-3+6}{x-3}=1+\frac{6}{x-3}\)

\(\Rightarrow6⋮\left(x-3\right)\Rightarrow x-3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Ta có bảng: 

x-3-112-23-36-6
x2451609-3

\(x\in Z\Rightarrow x=\left\{2;4;5;1;6;0;9;-3\right\}\)

AH
Akai Haruma
Giáo viên
2 tháng 10 2019

Lời giải:

Ta thấy:

\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)

\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)

Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.

Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$

$\Rightarrow n=2$

Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)

Vậy $n=2$

AH
Akai Haruma
Giáo viên
17 tháng 9 2019

Lời giải:

Ta thấy:

\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)

\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)

Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.

Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$

$\Rightarrow n=2$

Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)

Vậy $n=2$

8 tháng 5 2017

Câu 2 thế y = 1 - x rồi quy đồng như bình thường là ra bn nhé

8 tháng 10 2017

\(5n^3-9n^2+15n-27=0\)

\(=\left(5n-9\right)\left(n^2+3\right)\)Vì \(n^2+3>1\)Nên \(5n-9=1\)( vì nếu là số nguyên tố thì chỉ có 2 ước số là 1 và chính nó )

Vậy 5n = 10 => n = 2 

Với n = 2 ta có :

\(5n^3-9n^2+15n-27=7\)( nhận )

Nếu không tin bạn cứ tra bảng số nguyên tố đảm bảo có số 7