K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

Tại sao mà nói AD là tia phân giác rồi mà còn CD > DB ????

2 tháng 5 2020

a) Trong \(\Delta ABC\),do AB < AC(gt) nên \(\widehat{C}< \widehat{B}\)(góc đối diện với cạnh lớn hơn là góc lớn hơn)

\(\widehat{ADB},\widehat{ADC}\)theo thứ tự là góc ngoài tại đỉnh D của \(\Delta ADC,\Delta ADB\) ta có :

\(\hept{\begin{cases}\widehat{ADB}=\widehat{C}+\widehat{A_1}\left(1\right)\\\widehat{ADC}=\widehat{B}+\widehat{A_2}\left(2\right)\end{cases}}\)

Vì \(\widehat{C}< \widehat{B}\),còn \(\widehat{A_1}=\widehat{A_2}\)(gt) , do đó từ 1 và 2 => \(\widehat{ADB}< \widehat{ADC}\)

b) Do AB < AC(gt),trên cạnh AC lấy điểm E sao cho AE = AB

Xét \(\Delta ADB\) và \(\Delta ADE\)có :

AD chung

\(\widehat{DAB}=\widehat{DAE}\)

AB = AE(gt)

=> \(\Delta ADB=\Delta ADE\left(c.g.c\right)\)

Nên \(\widehat{AED}=\widehat{B}\) mà \(\widehat{AEB}+\widehat{DEC}=180^0\)(2 góc kề bù),do đó \(\widehat{B}+\widehat{DEC}=180^0\left(3\right)\)

Mặt khác \(\Delta ABC\)thì \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\), do đó \(\widehat{B}+\widehat{C}< 180^0\left(4\right)\)

Từ 3 -> 4 ta có \(\widehat{DEC}>\widehat{C}\)

Trong \(\Delta DEC\)ta có DE < DC,nhưng DE = DB(cạnh tương ứng của hai tam giác bằng nhau : \(\Delta ADB=\Delta ADE\))

Vậy DB < DC hay DC > DB

29 tháng 3 2019

a, Xét △ABD và △ACD có:

AB=AC(gt)AB=AC(gt)

Aˆ1=Aˆ2A^1=A^2 (vì AD là phân giác của ∠A)

AD chung

⇒ΔABD=ΔACD(c.g.c)⇒ΔABD=ΔACD(c.g.c)

Vậy ΔABD=ΔACD(đpcm)ΔABD=ΔACD(đpcm)

b, Vì △ABD=△ACD (chứng minh trên) nên ta có:

Bˆ=CˆB^=C^ (hai góc tương ứng)

Vậy Bˆ=Cˆ(đpcm)B^=C^(đpcm)

c, Vì △ABD=△ACD (chứng minh trên) nên ta có:

Dˆ1=Dˆ2D^1=D^2 (hai góc tương ứng)

Mà Dˆ1+Dˆ2=1800D^1+D^2=1800 (kề bù)

⇒Dˆ1=Dˆ2=18002=900⇒D^1=D^2=18002=900

Vậy AD⊥BC(đpcm)

2 tháng 5 2020

6754-4567=

cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AB=AD.

a) C/m: Tam giác ABC=tam giác ADC

b)Biết AC=8cm, BC=10cm. So sánh các góc của tam giác ABC

c)Gọi N là trung điểm của BC, đường thẳng qua B song song với CD cắt DN tại K. C/m: DN=NK. Từ dó =>2DN<DC+DB

d)Đường thẳng qua A song song với BC cắt CD tại M. C/m: M là trung điểm của CD.

5 tháng 7 2018

1. Vì tứ giác ABCD là hình thang AB//CD nên góc A+ góc D=180 độ mà góc A- góc D=40 do suy ra goc D= (180-40):2=70 do suy ra goc A= 180-70=110 do

Tương tự ta cũng có: \(\widehat{B}+\widehat{C}=180^0\)ma \(\widehat{B}=4\times\widehat{C}\)\(\Rightarrow4\times\widehat{C}+\widehat{C}=180^0\Rightarrow5\times\widehat{C}=180^0\Rightarrow\widehat{C}=36^0\Rightarrow\widehat{B}=180^0-36^0=144^0\)

Còn bài 2 thì tớ chưa nghĩ ra bạn rang đoi nhá

5 tháng 7 2018

2. Vì AB//DC ma \(K\in AB\Rightarrow\widehat{AKD}=\widehat{KDC};\widehat{BKC}=\widehat{KCD}\) (1)

    Vì DK là tia phân giác của \(\widehat{ADC}\Rightarrow\widehat{ADK}=\widehat{KDC}\)và CK là tia phân giác của \(\widehat{BCD}\Rightarrow\widehat{KCB}=\widehat{KCD}\)(2)

Từ(1) vả (2) ta có: \(\widehat{AKD}=\widehat{ADK};\widehat{BKC}=\widehat{BCK}\)suy ra tam giác AKD cân tại A và tam giác KBC cân tại B 

\(\Rightarrow AK=AD;BK=BC\Rightarrow AK+BK=AD+BC\Rightarrow AB=AD+BC\)

26 tháng 5 2016

a, Kẻ .BN vuông AD, BM vuông CD 
Xét tam giác vuông BNA và BMD có 
+ AB = BC 
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70* 
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn) 
Suy ra : BN = BM => BD là phân giác góc D (đpcm) 
b/ 
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35* 
=>ADC = 70* 
Do ADC + BAD = 180* => AB song song CD 
VÀ BCD = ADC =70* 
=> tứ giác ABCD là htc (đpcm)

cái này hình như của lớp 8 chứ lớp 7 ko có nên mk ko bít làm !!

5465746837648579