K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

Cho \(Q=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)

a, Rút gọn Q

B, Chứng minh Q=\(\frac{b+81}{b-81}\)thì \(\frac{b}{a}\)là một số nguyên chia hết cho 3

\(Q=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)

\(Q=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{a}\left(\sqrt{b}+2\right)-3\left(\sqrt{b}+2\right)}-\frac{6-\sqrt{ab}}{\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)}\)

\(Q=\frac{2\sqrt{a}+3\sqrt{b}}{\left(\sqrt{a}-3\right)\left(\sqrt{b}+2\right)}-\frac{6-\sqrt{ab}}{\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}\)

\(Q=\frac{\left(2\sqrt{a}+3\sqrt{b}\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}-\frac{\left(\sqrt{a}-3\right)\left(6-\sqrt{ab}\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)\left(\sqrt{b}+2\right)}\)

\(Q=\frac{\left(2\sqrt{a}+3\sqrt{b}\right)\left(\sqrt{a}+3\right)-\left(\sqrt{a}-3\right)\left(6-\sqrt{ab}\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}\)

\(Q=\frac{2a+6\sqrt{a}+3\sqrt{ab}+9\sqrt{b}-6\sqrt{a}+a\sqrt{b}+18-3\sqrt{ab}}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}\)

\(Q=\frac{2a+9\sqrt{b}+a\sqrt{b}+18}{\left(a-9\right)\left(\sqrt{b}+2\right)}\)

\(Q=\frac{\left(a+9\right)\left(\sqrt{b}+2\right)}{\left(a-9\right)\left(\sqrt{b}+2\right)}=\frac{a+9}{a-9}\)

19 tháng 8 2017

Bạn giúp mình làm phần b với :<

27 tháng 7 2020

Trả lời:

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-12\sqrt{5}+9}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

\(A=\sqrt{1}\)

\(A=1\)

\(B=\frac{\left(5+2\sqrt{6}\right).\left(49-20\sqrt{6}\right).\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(3+2\sqrt{6}+2\right).\left(49-20\sqrt{6}\right).\sqrt{3-2\sqrt{6}+2}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2.\left(49-20\sqrt{6}\right).\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2.\left(49-20\sqrt{6}\right).\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{33}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right).\left(\sqrt{3}-\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right).\left(49-20\sqrt{6}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(3-2\right).\left(49\sqrt{3}-60\sqrt{2}+49\sqrt{2}-40\sqrt{3}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{1.\left(9\sqrt{3}-11\sqrt{2}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=1\)

20 tháng 9 2020

a) Ta có: \(\sqrt{29-12\sqrt{5}}=\sqrt{20-12\sqrt{5}+9}=\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)

\(\Rightarrow\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{3-\left(2\sqrt{5}-3\right)}=\sqrt{3-2\sqrt{5}+3}\)

\(=\sqrt{6-2\sqrt{5}}=\sqrt{5-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)

\(\Leftrightarrow A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)( đpcm )

17 tháng 5 2017

đừng chửi mik nha, mik ms hk lp 7 àk

27 tháng 6 2018

a)Đặt A=.......

Bình phương 2 vế rồi làm binh thường