K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

Đặt \(a=\frac{x+y}{2};b=\frac{y+z}{2};c=\frac{z+x}{2}\)

Thì \(\Rightarrow a+b+c=\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{x+y+y+z+z+x}{2}=\)\(x+y+z=1\)

Bất đẳng thức đã tương đương với \(x+2y+z\ge4\left(x+y\right).\left(y+z\right).\left(z+x\right)\)

\(\Rightarrow a+b\ge16abc\)

Ta có: \(\left(a+b\right).\left(a+b+c\right)^2\ge4\left(a+b\right).4c\left(a+b\right)\ge16abc\left(đpcm\right).\)

10 tháng 6 2018

cảm ơn bn

14 tháng 5 2018

Ta có: \(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\)

Áp dụng BĐT Cauchy Schwarz, ta có:

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

=> ĐPCM

Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{\sqrt{3}}\)

13 tháng 5 2020

Áp dụng BĐT Cosi cho 2 số dương, ta có:

\(\frac{9x^3}{y+2z}+x\left(y+2z\right)\ge6x^2;\frac{9y^3}{z+2x}+y\left(z+2x\right)\ge6y^2;\frac{9z^3}{x+2y}+z\left(x+2y\right)\ge6z^3\)

Lại có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)

Do đó \(\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}+3\left(xy+yz+zx\right)\ge6\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}\ge6\left(x^2+y^2+z^2\right)-3\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{\sqrt{3}}\)

8 tháng 11 2019

Từ giả thiết , ta có :

\(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\left(1\right)\)

\(\Rightarrow1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\)

Áp dụng bất đẳng thức sau : \(abc\le\left(\frac{a+b+c}{3}\right)^3\) ta có :

\(1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\le\left(\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3}{3}\right)^3\)

\(\Rightarrow3\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3\)

\(\Rightarrow6\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow6xyz\le xy+yz+zx\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra:

\(3-3\left(x+y+z\right)+3\left(xy+yz+zx\right)=6xyz\le xy+yz+zx\)

\(\Rightarrow0\ge3-3\left(x+y+z\right)+2\left(xy+yz+zx\right)\)

Cộng 2 vế của bất đẳng thức trên cho \(\left(x^2+y^2+z^2\right)\)ta được:

\(x^2+y^2+z^2\ge\left(x+y+z\right)^2-3\left(x+y+z+3\right)=\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu '' = '' xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\) 

10 tháng 11 2019

ta có:

xyz=(1-x).(1-y).(1-z)                                 (1)

=>1=(1:x-1).(1:y-1).(1:z-1)

3 tháng 5 2018

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 3 2021

Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!

13 tháng 3 2021

Thầy ơi, nhưng câu này là đề thi huyện chỗ em á thầy, em cũng chả biết làm sao nữa, chả nhẽ đề thi huyện lại sai:"(

10 tháng 11 2019

\(4\left(x+y\right)\left(y+z\right)\left(1-y\right)\le\left(x+2y+z\right)^2\left(1-y\right)\)

\(\le\frac{1}{4}\left(x+2y+z\right)\left(x+2y+z+1-y\right)^2=x+2y+z\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=z=\frac{1}{2}\\y=0\end{cases}}\)

22 tháng 3 2019

a, Ta có : ( x - y )^2>=0 => x^2-2xy+y^2 >= 0

                                <=> x^2+y^2>= 2xy ( đpcm)

b, Ta có: thay 1 = x +y +z

=> x^2+y^2+z^2 >= (x +y+z)/3

<=>x^2+y^2+z^2 + 1/3 >= (x+y+z)/3 + (1/3)

<=> x^2+1/9 +y^2+1/9+z^2+1/9  >= 2/3 ( * )

Áp dụng BĐT cô si có

x^2 + 1/9 >= 2.căn ( x^2/9)=2.x/3

y^2 +1/9 >= 2. căn ( y^2/9)=2y/3

z^2 +1/9>= 2. căn (z^2/9) = 2z/3

Cộng 3 cái lại

=> x^2 +1/9 +y^2 +1/9 +z^2 +1/9 >=2.( x+y+z)/3=2/3 => (*) đúng => đpcm.

K mk nhé

hok tốt