Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em ko chắc lắm đâu, tại yếu dạng điểm rơi tại biên này lắm.
*Tìm min
Ta có: \(S\ge x^2+y^2+z^2+\frac{3}{2}xyz\) (cái này dễ chứng minh) (Đẳng thức xảy ra khi có một số = 0 (hoặc 2 số "=" 0) )
Ta chứng minh: \(x^2+y^2+z^2+\frac{3}{2}xyz\ge\frac{9}{2}=\frac{\left(x+y+z\right)^2}{2}\)
\(\Leftrightarrow x^2+y^2+z^2+3xyz\ge2xy+2yz+2zx\)
Do \(\left[x\left(y-1\right)\left(z-1\right)\right]\left[y\left(z-1\right)\left(x-1\right)\right]\left[z\left(x-1\right)\left(y-1\right)\right]\)
\(=xyz\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2\ge0\) nên tồn tại ít nhất 1 thừa số không âm. Ở đây em sẽ chứng minh trường hợp \(x\left(y-1\right)\left(z-1\right)\ge0\). Các trường hợp còn lại chứng minh tương tự.
Do \(x\left(y-1\right)\left(z-1\right)\ge0\Rightarrow3xyz\ge3xy+3xz-3x\)
Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+zx-3x-2yz\ge0\)
\(\Leftrightarrow x\left(x+y+z\right)+\left(y-z\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\) và các hoán vị.
*Tìm Max:
Chưa nghĩ ra.
giúp mình với cho x+y+z=3 Tìm GTLN xy/(x+3y+2z) + yz/(y+3z+2x) + zx/(z+3x+2y)
*) tìm giá trị lớn nhất: từ giả thiết \(\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3\le x^2\\y^3\le y^2\end{cases}\Leftrightarrow}x^3+y^3\le x^2+y^2=1}\)
maxA=1 \(\Leftrightarrow\hept{\begin{cases}x^3=x^2\\y^3=y^2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=1;y=0\end{cases}}}\)
*) tìm giá trị nhỏ nhất \(\left(x+y\right)^2\le2\left(x^2+y^2\right)=1\Rightarrow x+y\le\sqrt{2}\Rightarrow\frac{x+y}{\sqrt{2}}\le1\)
do đó \(x^3+y^3\ge\frac{\left(x^3+y^3\right)\left(x+y\right)}{\sqrt{2}}\)theo bđt Bunhiacopxki
\(\left(x^3+y^3\right)\left(x+y\right)=\left[\left(\sqrt{x^3}\right)^2+\left(\sqrt{y^3}\right)^2\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\)
\(\ge\left(\sqrt{x^3}\cdot\sqrt{x}+\sqrt{y^3}\cdot\sqrt{y}\right)^2=x^2+y^2=1\)
vậy minA=\(\frac{1}{\sqrt{2}}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
1
do x,y bình đẳng như nhau giả sử \(x\ge y\)
Ta có:x2018+y2018=2
mà \(x^{2018}\ge0,y^{2018}\ge0\)
\(\Rightarrow x^{2018}+y^{2018}\ge0\)
Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)
Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)
\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)
\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)
Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)
Vậy........................
thanh niên này chắc VIP dài quá:))
** Max
\(A^2=\left(\sqrt{x+y}\cdot1+\sqrt{y+z}\cdot1+\sqrt{z+x}\cdot1\right)^2\)
Theo bunhia ta có:
\(A^2\le\left(1+1+1\right)\left(x+y+y+z+z+x\right)=6\Rightarrow A\le\sqrt{6}\) tại \(x=y=z=\frac{1}{3}\)
*** Min
Giả sử \(1\ge y\ge x\ge z\)
Ta có:
\(\sqrt{x+y}+\sqrt{y+z}\ge\sqrt{y}+\sqrt{x+y+z}\)
\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}\ge\sqrt{y\left(x+y+z\right)}\)
\(\Leftrightarrow xz=0\)
Đẳng thức xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)
Mặt khác:
\(\sqrt{y}+\sqrt{z+x}\ge\sqrt{x+y+z}\)
\(\Leftrightarrow\sqrt{y\left(z+x\right)}=0\)
Đẳng thức xảy ra \(\orbr{\begin{cases}y=0\\z+x=0\end{cases}}\)
Kết hợp 2 dấu đẳng thức xảy ra thì \(x=z=0;y=1\)
Khi đó
\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
\(\ge\sqrt{x+y+z}+\sqrt{x+y+z}=2\sqrt{x+y+z}=2\)
Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(0;1;0\right)\) và các hoán vị.
Em có cách này cho phần min nhưng không chắc lắm..
Min:
Giả sử \(x\ge y\ge z\)
\(A=\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\sqrt{\left(x+y\right)\left(z+y\right)}}\) (bình phương lên rồi lấy căn:v)
\(\ge\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\left(\sqrt{xz}+y\right)}\)
\(=\sqrt{4\left(x+y+z\right)+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}\ge\sqrt{4\left(x+y+z\right)}=2\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(1;0;0\right)\) và các hoán vị.
Ta có : x + y = 1 => y = 1 - x
Do đó: \(0\le x\le1\)
\(A=x^2+\left(1-x\right)^2=2x^2-2x+1\)
\(=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Min A = 1/2
Dấu = xảy ra khi: \(x=y=\frac{1}{2}\)
Do \(0\le x\le1\) nên \(x\left(x-1\right)\le0\)
\(\Rightarrow A=2x\left(x-1\right)+1\le1\)
Max A =1
Dấu = xảy ra khi: \(\orbr{\begin{cases}x=1\Rightarrow y=0\\x=0\Rightarrow y=1\end{cases}}\)
=.= hok tốt!!