Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AM-Gm đyyyyy
Giả sử P đạt min khi x=a=z>0; b=y>0; c=t>0. Khi đó bx=bz=ay; cx=cz=at và ta nghĩ đến việc sử dụng BĐT AM-GM như sau:
\(abxy\le\frac{b^2x^2+a^2y^2}{2}\left(1\right);abyz\le\frac{a^2y^2+b^2z^2}{2}\left(2\right);aczt\le\frac{c^2z^2+a^2t^2}{2}\left(3\right);actx\le\frac{a^2t^2+c^2x^2}{2}\left(4\right)\)
Từ (1);(2); (3) và (4) suy ra:
\(abcxy\le\frac{c\left(b^2x^2+a^2y^2\right)}{2}\left(5\right);abcyz\le\frac{c\left(a^2y^2+b^2z^2\right)}{2}\left(6\right);abczt\le\frac{b\left(a^2z^2+a^2t^2\right)}{2}\left(7\right);abctx\le\frac{b\left(a^2t^2+c^2x^2\right)}{2}\left(8\right)\)
Cộng các bất đẳng thức (5) (6) (7) (8) theo vế ta được
\(abc=abc\left(xy+yz+zt+tx\right)\le\)\(\frac{c\left(b^2x^2+a^2y^2\right)+c\left(a^2y^2+b^2z^2\right)+b\left(a^2z^2+a^2t^2\right)+b\left(a^2t^2+c^2x^2\right)}{2}=\frac{\left(b^2c+bc^2\right)\left(x^2+z^2\right)+2a^2cy^2+2a^2bt^2}{2}\)
tức \(\left(b^2c+bc^2\right)\left(x^2+z^2\right)+2a^2cy^2+2a^2bt^2\ge2abc\left(9\right)\)
Như vậy để tìm minP cần tìm các số a,b,c theo tỉ lệ thích hợp sao cho hệ số x2;y2;t2 chia nhau theo tỉ lệ 5:4:1
\(\frac{b^2c+bc^2}{5}=\frac{2a^2c}{4}=\frac{2a^2b}{1}\)
Mặt khác, ta có bất đẳng thức xảy ra khi x=z=a;y=b;c=t mà theo giả thiết xy+yz+zt+tx=1 nên phải có ab+bc+ca+ac=1
Và như vậy ta đưa được bài toán về việc giải hệ phương trình \(\hept{\begin{cases}\frac{bc\left(b+c\right)}{5}=\frac{a^2c}{2}=2a^2b\\a\left(b+c\right)=\frac{1}{2}\end{cases}}\)(*)
Giải hệ này ta tìm được \(a=\frac{1}{\sqrt[4]{50}};b=\frac{1}{\sqrt[4]{200}};c=\frac{1}{\sqrt[4]{200}}\)khi đó bất đẳng thức (9) trở thành
\(10a^2b\left(x^2+z^2\right)+8a^2by^2+2a^2b^2t^2\ge2abc\)
\(\Rightarrow P=5x^2+5z^2+4y^2+t^2\ge\frac{2abc}{2a^2b}=\frac{c}{a}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)
Vì vậy ta có đẳng thức xảy ra khi \(x=z=a=\frac{1}{\sqrt[4]{50}};b=y=\frac{1}{\sqrt[4]{200}};c=t=\frac{1}{\sqrt[4]{200}}\)
*Max
Có: \(x^2+4\ge4x\)
\(y^2+4\ge4y\)
\(z^2+4\ge4z\)
\(\Rightarrow x^2+y^2+z^2+12\ge4\left(x+y+z\right)\)\(\Rightarrow x+y+z\le\frac{x^2+y^2+z^2+12}{4}\)
Lại có \(xy+yz+zx\le x^2+y^2+z^2\)(Auto chứng minh)
Cộng 2 vế của bdtd lại ta đc \(x+y+z+xy+yz+zx\le\frac{5\left(x^2+y^2+z^2\right)+12}{4}\)
\(=\frac{5.12+12}{4}=18\)
"=" KHI x = y= z = 2
*Min : ta có : \(12+2\left(xy+yz+zx\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)^2\ge0\)
\(\Rightarrow xy+yz+zx\ge-6\)
Dấu "=" xảy ra <=> x + y + z = 0
Với các giá trị trên ta đc \(x+y+z+xy+yz+zx\ge0-6=-6\)
Dấu "=" <=> x + y + z = 0 và x2 + y2 + z2 = 12
bạn ơi mình giải thế này thì sao nhỉ:
đặt x+y+z=a=> \(a^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
=> \(xy+yz+zx=\frac{a^2-\left(x^2+y^2+z^2\right)}{2}\ge\frac{a^2-12}{2}\)
\(\Rightarrow P\ge a+\frac{a^2-12}{2}\ge-\frac{13}{2}\)( dùng hằng đẳng thức c/m)
dấu " =" <=> \(\hept{\begin{cases}x+y+z=-1\\x^2+y^2+z^2=12\end{cases}}\)
bạn xem thử hộ mik cái =)
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
Ta có :
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1.x+1.y+1.z\right)^2\) (Bunhia)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3.4=12\)
\(\Rightarrow-2\sqrt{3}\le x+y+z\le2\sqrt{3}\)
Bạn trên làm sai r. X+y+z ko âm cơ mà sao lại có gtnn là -2√3??
https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/
bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo
bài này có lập được bảng biến thiên, nhưng chắc chưa học nên làm cách cơ bản
ta có \(\frac{x^2}{x^2+yz+x+1}\le\frac{x^2}{2x\sqrt{yz+1}+x}=\frac{x}{2\sqrt{yz+1}+1}\) dấu "=" xảy ra khi x2=yz+1
ta lại có \(2=x^2+y^2+z^2=\left(x+y+z\right)^3-2x\left(y+z\right)-2yz\ge\left(x+y+z\right)^3-\frac{\left(x+y+z\right)^2}{2}-2yz\)
\(\Rightarrow\left(x+y+z\right)^2\le4\left(1+yz\right)\Rightarrow x+y+z\le2\sqrt{1+yz}\)
\(\Rightarrow\frac{y+z}{x+y+z+1}=1-\frac{x+1}{x+y+z+1}\le1-\frac{x+1}{2\sqrt{yz+1}+1}\)
do đó \(P\le\frac{x}{2\sqrt{yz+1}+1}+1-\frac{x+1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}=1-\frac{1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}\)
\(\le1-\frac{1}{yz+1+1+1}-\frac{1+yz}{9}=\frac{11}{9}-\left(\frac{1}{yz+3}+\frac{yz+3}{9}\right)\le\frac{11}{9}-\frac{2}{3}=\frac{5}{9}\)
dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1;y=1;z=0\\x=1;y=0;z=1\end{cases}}\)