K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2021

Nếu: a=0 thì hiển nhiên đúng. Tương tự với b=0

Nếu a;b>=1 thì Gọi d=UCLN(a,b)

a=da'; b=db'  với (a',b')=1.

ta có: d(a'^2.d+b'^2.d-a') chia hết cho 2d^2.a'.b'

nên: d(a'^2+b'^2)-a' chia hết cho d

do đó: a' chia hết cho d

nên d=1 từ đó ta có:

\(a^2+b^2-a⋮a\text{ nên: }b^2⋮a\left(\text{mà: }\left(a,b\right)=1\right)\text{ nên: }a=1\)

Vậy: a là số chính phương

16 tháng 2 2021

Tại sao lại suy ra được \(d\left(a'^2+b'^2\right)⋮d\)thế ?

25 tháng 4 2019

chồi e mới lớp 6

e mà làm đc bài này chắc e đã là thần đồng đất việt rùi

25 tháng 4 2019

Mày khùng à, ko biết thì biến

3 tháng 9 2016

Bạn đăng từng bài thôi :)

3 tháng 9 2016

em cx ms lm xong bài kia =))

30 tháng 8 2019

Đặt \(a-b=x;b-c=y;c-a=z\)

\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)

Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)

\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

DD
30 tháng 8 2021

Đặt \(d=\left(a,b\right)\)

Suy ra \(a=dm,b=dn,\left(m,n\right)=1\).

\(a^2+b^2=d^2\left(m^2+n^2\right)\)

\(ab=d^2mn\)

Suy ra \(\left(m^2+n^2\right)⋮mn\Rightarrow\hept{\begin{cases}m^2+n^2⋮m\\m^2+n^2⋮n\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m^2⋮n\\n^2⋮m\end{cases}}\Leftrightarrow\hept{\begin{cases}m⋮n\\n⋮m\end{cases}}\)(vì \(\left(m,n\right)=1\))

Suy ra \(m=n=1\).

Do đó \(a=b\)

\(M=\frac{8ab}{a^2+b^2}=\frac{8a^2}{a^2+a^2}=4\)là số chính phương. 

9 tháng 7 2019

#)Giải :

Đặt \(A=a^2+b^2+c^2\)

Do tích a.b chẵn nên ta xét các trường hợp :

TH1 : Trong a và b có 1 số chẵn và 1 số lẻ 

Giả sử a là số chẵn, còn b là số lẻ 2

=> a2 chia hết cho 4; b2 chia 4 dư 1 => a2 + b2 chia 4 dư 1

=> a2 + b2 = 4m + 1 (m thuộc N)

Chon c = 2m => a2 + b+ c2 = 4m2 + 4m + 1 = (2m + 1)(thỏa mãn) (1)

TH2 : Cả a,b cùng chẵn 

=> a2 + b2 chia hết cho 4 => a2 + b2 = 4n (n thuộc N)

Chọn c = n - 1 => a2 + b2 + c2 = n2 + 2n + 1 = (n + 1)2 (thỏa mãn) (2)

Từ (1) và (2) => Luôn tìm được số nguyên c thỏa mãn đề bài 

Do a, b là số chẵn nên ta xét 2 trường hợp:

TH1a chẵn, b lẻ => a2 + b2 = 4m + 1, khi đó chọn c có dạng 2m ta luôn có a2 + b2 + c2 = 4m+ 4m + 1 = (2m + 1)2 (ĐPCM)

TH2 : a, b chẵn => a2 + b2 = 4n, khi đó chọn c có dạng n-1 ta luôn có a2 + b2 + c2 = n2 + 2n + 1 = (n+1)2 (ĐPCM)