Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(xy+yz+zx=\frac{\left(x+y+z\right)^2-x^2-y^2-z^2}{2}=\frac{7^2-23}{2}=13\)
Ta lại có:
\(xy+z-6=xy+z+1-x-y-z=\left(x-1\right)\left(y-1\right)\)
\(\Rightarrow A=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}\)
\(=\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}=-1\)
a) Áp dụng bài toán sau : a + b + c = 0 \(\Rightarrow\)a3 + b3 + c3 = 3abc
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}\)
Ta có : \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)
\(A=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.3.\frac{1}{xyz}=3\)
b) x2 + y2 + z2 - xy - 3y - 2z + 4 = 0
4x2 + 4y2 + 4z2 - 4xy - 12y - 8z + 16 = 0
( 4x2 - 4xy + y2 ) + ( 3y2 - 12y + 12 ) + ( 4z2 - 8z + 4 ) = 0
( 2x - y )2 + 3 ( y - 2 )2 + 4 ( z - 1 )2 = 0
Ta có : ( 2x - y )2 \(\ge\)0 ; 3 ( y - 2 )2 \(\ge\)0 ; 4 ( z - 1 )2 \(\ge\)0
Mà ( 2x - y )2 + 3 ( y - 2 )2 + 4 ( z - 1 )2 = 0
\(\Rightarrow\)\(\hept{\begin{cases}2x-y=0\\y-2=0\\z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}}\)
Vậy ....
\(x+y+z=7\Rightarrow z=7-x-y\Rightarrow xy+z-6=xy+7-x-y-6=xy-x-y+1\)
\(=\left(x-1\right)\left(y-1\right)\)
Tương tự: \(yz+x-6=\left(y-1\right)\left(z-1\right);zx+y-6=\left(z-1\right)\left(x-1\right)\)
Viết lại: \(H=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}\)
\(=\frac{x-1+y-1+z-1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{x+y+z-3}{xyz-\left(xy+yz+zx\right)+x+y+z-1}\)
\(=\frac{7-3}{3-13+7-1}=-1\)(Từ gt tính được \(xy+yz+zx=13\))
Ta có :
\(xy+yz+zx\)= \(\frac{\left(x+y+z\right)^2-x^2-y^2-z^2}{2}\)= \(\frac{7^2-23}{2}\)= \(13\)
Ta lại có :
\(xy+z-6=xy+z+1-x-y-z\)= \(\left(x-1\right)\left(y-1\right)\)
\(\Rightarrow A=\)\(\frac{1}{\left(x-1\right)\left(y-1\right)}\)\(+\)\(\frac{1}{\left(y-1\right)\left(z-1\right)}\)\(+\)\(\frac{1}{\left(z-1\right)\left(x-1\right)}\)
\(=\)\(\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}\)
\(=-1\)