K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

Từ zyz = 4 => \(\sqrt{xyz}=\sqrt{4}=2\)

Ta có:A = \(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{2\sqrt{z}}{\sqrt{zx}+2\sqrt{z}+2}\)

A = \(\frac{\sqrt{xz}}{\sqrt{xyz}+\sqrt{xz}+2\sqrt{z}}+\frac{\sqrt{xyz}}{\sqrt{xy^2z}+\sqrt{xyz}+\sqrt{xz}}+\frac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\)

A = \(\frac{\sqrt{xz}}{\sqrt{xz}+2\sqrt{z}+2}+\frac{2}{2\sqrt{z}+\sqrt{xz}+2}+\frac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\)

A = \(\frac{\sqrt{xz}+2\sqrt{z}+2}{\sqrt{xz}+2\sqrt{z}+2}=1\)

NV
20 tháng 6 2019

Bạn xem lại chỗ \(\sqrt{zx}+2\sqrt{z}+2\) có phải \(\sqrt{zx}+2\sqrt{z}+4\) không?

Nếu đúng thì tính được, còn ko thì bó tay

11 tháng 7 2020

Đặt \(\left(a,b,c\right)=\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\).

Xét 4 số m, n, p, q. Ta sẽ chứng minh \(\left(m+n+p+q\right)^2\le4\left(m^2+n^2+p^2+q^2\right)\) (*)

Thật vậy:

(*) \(\Leftrightarrow2\left(mn+np+pq+qm+mp+nq\right)\le3\left(m^2+n^2+p^2+q^2\right)\)

\(\Leftrightarrow\left(m-n\right)^2+\left(n-p\right)^2+\left(p-q\right)^2+\left(q-m\right)^2+\left(m-p\right)^2+\left(n-q\right)^2\ge0\) (luôn đúng).

Từ đó: \(\left(\sqrt{x}+\sqrt{y}+2\sqrt{z}\right)^2=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{z}\right)^2\le4\left(x+y+z+z\right)=4\left(x+y+2z\right)\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}+2\sqrt{z}\le2\sqrt{x+y+2z}\)

\(\Leftrightarrow\sqrt{\frac{xy}{x+y+2z}}=\frac{\sqrt{xy}}{\sqrt{x+y+2z}}\le\frac{2\sqrt{x}\sqrt{y}}{\sqrt{x}+\sqrt{y}+2\sqrt{z}}=\frac{2ab}{a+b+2c}\le\frac{1}{2}ab\frac{4}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{2}ab\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự, ta có:

\(\sum\sqrt{\frac{xy}{x+y+2z}}\le\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{bc}{c+a}\right)=\frac{1}{2}\sum a=\frac{1}{2}\)

29 tháng 8 2018

Ta có: \(xyz=4\Rightarrow\sqrt{xyz}=2\)

Thay vào biểu thức P thì được:

\(P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{xyz^2}}{\sqrt{zx}+\sqrt{xyz^2}+\sqrt{xyz}}\)

\(P=\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}\)

\(P=\frac{1+\sqrt{y}+\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}=1\Rightarrow\sqrt{P}=1.\)

Vậy ...

6 tháng 2 2020

 Đoạn cuối của cô Nguyễn Linh Chi em có 1 cách biến đổi tương đương cũng khá ngắn gọn ạ

\(RHS\ge2\cdot\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

Theo đánh giá của cô Nguyễn Linh Chi thì \(xy+yz+zx\ge x+y+z\ge3\)

Ta cần chứng minh:\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\ge\frac{1}{2}\)

Thật vậy,BĐT tương đương với:

\(2\left(x+y+z\right)^2\ge x^2+y^2+z^2-x-y-z+18\)

\(\Leftrightarrow\left(x+y+z\right)^2+x+y+z-12\ge0\)

\(\Leftrightarrow\left(x+y+z+4\right)\left(x+y+z-3\right)\ge0\) ( luôn đúng với \(x+y+z\ge3\) )

=> đpcm

6 tháng 2 2020

Áp dụng: \(AB\le\frac{\left(A+B\right)^2}{4}\)với mọi A, B

Ta có:

\(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\le\frac{\left(x+2+x^2-2x+4\right)^2}{4}\)

=> \(\sqrt{x^3+8}\le\frac{x^2-x+6}{2}\)

=> \(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)

Tương tự 

=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\)

\(\ge\frac{2x^2}{x^2-x+6}+\frac{2y^2}{y^2-y+6}+\frac{2z^2}{z^2-z+6}\)

\(=2\left(\frac{x^2}{x^2-x+6}+\frac{y^2}{y^2-y+6}+\frac{z^2}{z^2-z+6}\right)\)

\(\ge2\frac{\left(x+y+z\right)^2}{x^2-x+6+y^2-y+6+z^2-z+6}\)

\(=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)(1)

Ta có: \(x+y+z\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) với mọi x, y, z 

=> \(\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)

=> \(\left(x+y+z\right)\left(x+y+z-3\right)\ge0\)

=> \(x+y+z\ge3\)với mọi x, y, z dương

Và \(x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le\left(x+y+z\right)^2-2\left(x+y+z\right)\)

Do đó: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\)

Đặt: x + y + z = t ( t\(\ge3\))

Xét hiệu: \(\frac{t^2}{t^2-3t+18}-\frac{1}{2}=\frac{t^2+3t-18}{t^2-3t+18}=\frac{\left(t-3\right)\left(t+6\right)}{\left(t-\frac{3}{2}\right)^2+\frac{63}{4}}\ge0\)với mọi t \(\ge3\)

Do đó: \(\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\ge\frac{1}{2}\)(2)

Từ (1); (2) 

=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge2.\frac{1}{2}=1\)

Dấu "=" xảy ra <=> x= y = z = 1

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Lời giải:

Đặt $(\sqrt{x}, \sqrt{y}, \sqrt{z})=(a,b,c)$. Khi đó:

$abc=\sqrt{xyz}=2$

$A=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ca+2c+2}$

$=\frac{a}{ab+a+2}+\frac{ab}{abc+ab+a}+\frac{2c}{ca+2c+abc}$

$=\frac{a}{ab+a+2}+\frac{ab}{2+ab+a}+\frac{2}{a+2+ab}$

$=\frac{a+ab+2}{ab+a+2}=1$

$\Rightarrow \sqrt{A}=1$

Vậy.........

4 tháng 1 2020

Ta có: \(xyz=4\Leftrightarrow\sqrt{xyz}=\sqrt{4}=2\)

\( A=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\frac{\sqrt{y}}{\sqrt{xy}+\sqrt{y}+1}+\frac{2\sqrt{z}}{\sqrt{zx}+2\sqrt{z}+2}\)

\(=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\frac{\sqrt{xy}}{\sqrt{xyz}+\sqrt{xy}+\sqrt{x}}+\frac{2\sqrt{z}}{\sqrt{xz}+\sqrt{xyz}\sqrt{z}+\sqrt{xyz}}\\ =\frac{\sqrt{x}}{\sqrt{xyz}+\sqrt{xy}+\sqrt{x}}+\frac{\sqrt{xy}}{\sqrt{xyz}+\sqrt{xy}+\sqrt{x}}+\frac{2}{\sqrt{xyz}+\sqrt{xy}+\sqrt{x}}\\ =\frac{\sqrt{x}+\sqrt{xy}+2}{\sqrt{xyz}+\sqrt{xy}+\sqrt{z}}\\ =\frac{\sqrt{x}+\sqrt{xy}+\sqrt{xyz}}{\sqrt{xyz}+\sqrt{xy}+\sqrt{x}}\\ =1\)

\(\Leftrightarrow A=1\\ \Rightarrow\sqrt{A}=\sqrt{1}=1\)