Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a^2+b^2)/2>=ab
<=>(a^2+b^2)>=2ab
<=> a^2+2ab+b^2>=2ab
<=>a^2+b^2>=0(luôn đúng)
=> điều phải chứng minh.
Xét hiệu: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> \(a^2+b^2\ge2ab\)
Dấu "=" xra <=> a = b
Áp dụng ta có:
a) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
dấu "=" xra <=> a = b = c = 1
b) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)
Dấu "=" xra <=> a = b= c = d = 2
\(a^2+b^2+c^2+1>a+b+c\)
\(\Leftrightarrow a^2+b^2+c^2+1-a-b-c>0\)
\(\Leftrightarrow\left(a^2-a+\frac{1}{4}\right)+\left(b^2-b+\frac{1}{4}\right)+\left(c^2-c+\frac{1}{4}\right)+\frac{1}{4}>0\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2+\frac{1}{4}>0\)( luôn đúng )
Vậy ...
Ta có: \(a^2+b^2+c^2+1>a+b+c\)
\(\Leftrightarrow a^2+b^2+c^2+1-a-b-c>0\)
\(\Leftrightarrow\left(a^2-a+\frac{1}{4}\right)+\left(b^2-b+\frac{1}{4}\right)+\left(c^2-c+\frac{1}{4}\right)+\frac{1}{4}>0\)
\(\Leftrightarrow\left(a^2-2.a.\frac{1}{2}+\frac{1}{4}\right)+\left(b^2-2.b.\frac{1}{2}+\frac{1}{4}\right)+\left(c^2-2.c.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}>0\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2+\frac{1}{4}>0\)
Ta thấy: (a-1/2)2 lớn hơn hoặc bằng 0 (với mọi a)
(b-1/2)2 lớn hơn hoặc bằng 0 (với mọi b)
(c-1/2)2 lớn hơn hoặc bằng 0 (với mọi c)
1/4 > 0
Nên BĐT luôn đúng
=> ĐPCM
a ) Áp dụng BĐT phụ \(a^2+b^2\ge2ab\) cho các cặp số thực , ta có :
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
b ) Làm tương tự như a )
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
a) Lại có : \(\left(a-1\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+1\ge2a\)
cmtt \(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)
Nhân vế theo vế ta đc: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\left(dpcm\right)\)
b) Tiếp tục có \(\left(a-2\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+4\ge4a\)
CMTT: \(\Rightarrow\left\{{}\begin{matrix}b^2+4\ge4b\\c^2+4\ge4c\end{matrix}\right.\)
Nhân vế theo vế ta đc: \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge4a.4b.4c=256abc\left(dpcm\right)\)
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Áp dụng bất đẳng thức Cauchy - Schwarz với 2 bộ số \(\left(a,b,c\right)\)và \(\left(1,1,1\right)\)ta có:
\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a.1+b.1+c.1\right)^2=1\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{1}{3}\).
Dấu \(=\)xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\).
Còn cách khác :3
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :
\(a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1^2}{3}=\frac{1}{3}\)
Đẳng thức xảy ra <=> a = b = c = 1/3
Vậy ta có điều phải chứng minh