K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2023

\(3x^2+2y^2=5xy\)

\(\Leftrightarrow3x^2+2y^2-5xy=0\)

\(\Leftrightarrow2\left(x^2-2xy+y^2\right)+x^2-xy=0\)

\(\Leftrightarrow2\left(x-y\right)^2+x\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[2\left(x-y\right)+x\right]=0\)

\(\Leftrightarrow\left(x-y\right)\left(3x-2y\right)=0\)

\(\Leftrightarrow3x-2y=0\Leftrightarrow x=\dfrac{2y}{3}\) Thay vào S

\(\Rightarrow S=\dfrac{y+\dfrac{4y}{3}}{y-\dfrac{4y}{3}}=-7\)

19 tháng 8 2018

2x2 + 3y2 = 5xy

=> 2x2 + 3y2 - 5xy = 0

=> 2 ( x2 - 2xy + y2 )  - xy + y2 = 0

=> 2 ( x - y ) 2 - y ( x - y ) = 0

=> ( x - y )[ 2( x - y ) - y ] = 0

=> ( x- y ) ( 2x - 2y - y ) = 0

=> ( x - y ) ( 2x - 3y ) = 0

TH1 : x - y = 0

=> x = y 

Thay x = y vào \(\frac{x+2y}{3x-y}\)

=> \(\frac{x+2y}{3x-y}=\frac{y+2y}{3y-y}\)\(=\frac{3y}{2y}=\frac{3}{2}\)

TH2 : 2x - 3y = 0

=> 2x = 3y

=> \(\frac{x}{y}=\frac{3}{2}\)

=> x = \(\frac{3}{2}.y\)

Thay x = \(\frac{3}{2}.y\)vào \(\frac{x+2y}{3x-y}\)

=> \(\frac{x+2y}{3x-y}=\frac{\frac{3}{2}.y+2y}{3.\frac{3}{2}y-y}\)\(=\frac{\frac{7}{2}.y}{\frac{7}{2}.y}=1\)

10 tháng 2 2019

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

ai lm hộ mk vs

b1: 

ĐKXĐ: \(x\ne0;x\ne\pm2\)

Ta có : \(A=\left(\frac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{8x^2}{x^2-4}\right)\left(\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x^2-8x-8x^2}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{x-1-2x+4}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{3-3x}{x\left(x-2\right)}\right)\)

\(=\frac{12\left(x-1\right)}{x-2}\)

Vậy ....

Ta có : \(A< 0\Rightarrow\frac{12\left(x-1\right)}{x-2}< 0\)

Đến đây xét 2 TH 12(x-1)<0 & (x-2)>0 hoặc 12(x-1)>0 & (x-2)<0

3 tháng 3 2018

mấy bạn chuyên toán giải giùm mk bài b) giùm ạ, mk đaq rất cần

24 tháng 1 2017

(a) làm được rồi port lên luôn vì (b) cần cái KQ của (a)

24 tháng 1 2017

Rút gọn ra \(A=y+x\) nhé

23 tháng 9 2019

\(P=\left(x+y\right)^3-3xy\left(x+y\right)+2x^2y^2\)

\(=2x^2y^2-3xy+1=2t^2-3t+\frac{5}{8}+\frac{3}{8}\) (đặt t = xy \(\Rightarrow t\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\))

\(=\frac{1}{8}\left(4t-1\right)\left(4t-5\right)+\frac{3}{8}\ge\frac{3}{8}\)

Do đó \(P\ge\frac{3}{8}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=1\\t=\frac{1}{4}\\x=y\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

True?

1 tháng 4 2020

Em không hiểu ctv giải dòng suy ra T ạ