Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y\ge1+xy\Rightarrow1\ge\dfrac{1}{y}+x\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le4\Rightarrow\dfrac{y}{x}\ge4\)
\(G=\dfrac{x}{y}+\dfrac{y}{x}=\left(\dfrac{x}{y}+\dfrac{y}{16x}\right)+\dfrac{15}{16}.\dfrac{y}{x}\ge2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4=\dfrac{17}{4}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(B=\frac{x^3}{y+1}+\frac{y^3}{1+x}=\frac{\left(x^4+y^4\right)+\left(x^3+y^3\right)}{xy+x+y+1}\)
\(=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-xy\right)}{x+y+2}=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-1\right)}{x+y+2}\)
Áp dụng BĐT cô si với các số dương x2 ; y2 ; x4 ; y4 ta được :
\(B\ge\frac{2x^2y^2+\left(x+y\right)\left(2xy-1\right)}{x+y+2}=\frac{2+\left(x+y\right)}{x+y+2}=1\)
Dấu ''='' xảy ra khi \(\Leftrightarrow x=y=1\)
x+xy+y+1=9
(x+1)(y+1)=9
áp dụng bđt ab<=(a+b)^2/4
->9<=(x+y+2)^2/4 -> x+y >=4
....
\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{3}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{4xy}\)
Ta có BĐT phụ: \(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(đúng )
Dấu "=" xảy ra <=> x=y
\(\Rightarrow P\ge\frac{4}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1}+2+\frac{5}{1}=11\)
Dấu"=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy Min P =11 \(\Leftrightarrow x=y=\frac{1}{2}\)
Áp dụng BĐT cosi:
`1/x^2+1/y^2>=2/(xy)`
`<=>2>=2/(xy)`
`<=>1>=1/(xy)`
`<=>xy>=1`
Dấu "=" xảy ra khi `x=y=1`