Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{9}{2}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\dfrac{9}{2}\)
Vậy \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{9}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Áp dụng bất đửng thức cô si cho các cặp số dương ta có:
\(\left\{{}\begin{matrix}ab+\dfrac{a}{b}\ge2\sqrt{ab\times\dfrac{a}{b}}=2a\\ab+\dfrac{b}{a}\ge2\sqrt{ab\times\dfrac{b}{a}}=2b\\\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}\times\dfrac{b}{a}}=2\end{matrix}\right.\)
cộng theo vế 3 bđt trên ta được
\(2\left(ab+\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2\left(a+b+1\right)\)
\(\Leftrightarrow ab+\dfrac{a}{b}+\dfrac{b}{a}\ge a+b+1\)
Trịnh Thị Giang đề sai hay bài bạn sai
mình không biết ai đúng ai sai nhưng phải có một cái sai
Lời giải:
Đặt \(\left(\frac{1}{ab},\frac{1}{bc},\frac{1}{ac}\right)\mapsto (x,y,z)\). ĐK chuyển thành \(x^2+y^2+z^2+2xyz=1\)
Ta cần CM \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq 2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\Leftrightarrow x+y+z\geq 2(xy+yz+xz)\) $(1)$
Vì \(x^2+y^2+z^2+2xyz=1\) nên tồn tại $m,n,p>0$ sao cho \(x=\frac{m}{\sqrt{(m+n)(m+p)}};y=\frac{n}{\sqrt{(n+p)(n+m)}};z=\frac{p}{\sqrt{(m+p)(n+p)}}\)
Khi đó \((1)\Leftrightarrow m\sqrt{n+p}+n\sqrt{m+p}+p\sqrt{m+n}\geq \frac{2mn}{\sqrt{m+n}}+\frac{2np}{\sqrt{n+p}}+\frac{2mp}{\sqrt{m+p}}\)
\(\Leftrightarrow \frac{m(p-n)}{\sqrt{m+n}}+\frac{n(p-m)}{\sqrt{m+n}}+\frac{n(m-p)}{\sqrt{n+p}}+\frac{p(m-n)}{\sqrt{n+p}}+\frac{m(n-p)}{\sqrt{m+p}}+\frac{p(n-m)}{\sqrt{m+p}}\geq 0\)
\(\Leftrightarrow \sum \frac{m(p-n)^2}{\sqrt{(m+n)(m+p)}(\sqrt{m+n})+\sqrt{m+p})}\geq 0\) (luôn đúng)
Do đó $(1)$ đúng, suy ra ta có đpcm
Dấu $=$ xảy ra khi $m=n=p$ hay $x=y=z=\frac{1}{2}$ hay $a=b=c=\sqrt{2}$
\(1.CMR:\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1=\frac{a}{b}+\frac{b}{a}+2\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}+2\ge2+2=4\)
Dấu '' = '' xảy ra khi \(a=b\)
\(2.\\ a.CMR:a^2+2b^2+c^2-2ab-2bc\ge0\forall a,b,c\)
\(a^2+2b^2+c^2-2ab-2bc=a^2-2ab+b^2+c^2-2bc+b^2=\left(a-b\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)
Dấu '' = '' xảy ra khi \(a=b=c\)
\(b.CMR:a^2+b^2-4a+6b+13\ge0\forall a,b\)
\(a^2+b^2-4a+6b+13=\left(a^2-4a+4\right)+\left(b^2+6b+9\right)=\left(a-2\right)^2+\left(b+9\right)^2\ge0\forall a,b\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)
Áp dụng bất đẳng thức AM-GM cho 2 số dương ta có:\(\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\)(1)
\(\dfrac{b^3}{b^2+1}=\dfrac{b\left(b^2+1\right)-b}{b^2+1}=b-\dfrac{b}{b^2+1}\ge b-\dfrac{b}{2b}=b-\dfrac{1}{2}\)(2)
\(\dfrac{1}{a^2+1}=\dfrac{a^2+1-a^2}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)(3)
Cộng theo vế:
\(A\ge a+b+1-\dfrac{b}{2}-\dfrac{1}{2}-\dfrac{a}{2}=\dfrac{a+b+1}{2}\left(đpcm\right)\)
Lời giải:
Áp dụng BĐT AM-GM:
\(1\geq a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}\)
\(\frac{a}{2}+\frac{a}{2}+\frac{1}{16a^2}\geq 3\sqrt[3]{\frac{a}{2}.\frac{a}{2}.\frac{1}{16a^2}}=\frac{3}{4}(1)\)
\(\frac{b}{2}+\frac{b}{2}+\frac{1}{16b^2}\geq 3\sqrt[3]{\frac{b}{2}.\frac{b}{2}.\frac{1}{16b^2}}=\frac{3}{4}(2)\)
\(\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\geq \frac{15}{16}.2\sqrt{\frac{1}{a^2}.\frac{1}{b^2}}=\frac{15}{8ab}\geq \frac{15}{8.\frac{1}{4}}=\frac{15}{2}(3)\)
Lấy \((1)+(2)+(3)\Rightarrow a+b+\frac{1}{a^2}+\frac{1}{b^2}\geq \frac{3}{4}+\frac{3}{4}+\frac{15}{2}=9\) (đpcm)
Dấu "=" xảy ra khi $a=b=\frac{1}{2}$