Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc = 1 => a3b3c3=1
<=> \(a^3+b^3+c^3+2a^3b^3+2b^3c^3+2a^3c^3+3a^3b^3c^3\ge3a^2b+3b^2c+3c^2a+3\)
Áp dụng BĐT cauchy cho 3 số dương ta có :
\(a^3b^3+b^3c^3+a^3c^3\ge3\sqrt[3]{a^6b^6c^6}\) <=> \(a^3b^3+b^3c^3+a^3c^3\ge3\)Dấu = xảy ra khi a=b=c (1)
Tương tự ta có : \(a^3b^3c^3+a^3b^3+a^3\ge3a^2b\)Dấu = xảy ra duy nhất khi a=b=c=1 (2)
\(a^3b^3c^3+b^3c^3+b^3\ge3b^2c\) Dấu = xảy ra duy nhất khi a=b=c=1 (3)
\(a^3b^3c^3+a^3c^3+c^3\ge3c^2a\)Dấu = xảy ra duy nhất khi a=b=c=1 (4)
Cộng (1),(2),(3),(4) vế theo vế ta được ĐPCM (Dấu = xảy ra khi a=b=c=1)
Đây là cách giải của mình k rõ bạn làm sao nếu có cách khác hay hơn thì xin chỉ giáo :D
Áp dụng BĐT cô si ta có :
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3\)
\(\Rightarrow BĐT\)cần \(CM\): \(3>\frac{9}{a+b+c}\Leftrightarrow a+b+c>3\)
Mà a,b,c > 0 => abc > 0
\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a^2=b^2=c^2=1\end{cases}\Leftrightarrow}a=b=c=1\)
a) \(a,b>0\Rightarrow a^3-b^3< a^3+b^3\)
Mà \(a^3+b^3=a-b\)
\(\Rightarrow a^3-b^3< a-b\)
\(\Rightarrow\frac{a^3-b^3}{a-b}< 1\)
\(\Leftrightarrow\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}< 1\)
\(\Leftrightarrow a^2+ab+b^2< 1\)
\(\Rightarrow a^2+b^2< 0\)(Vì a,b > 0)
b) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath
<=> a^3+b^3+c^3+d^3 = 3c^3-15d^3 = 3.(c^3-5d^3) chia hết cho 3
Xét a^3-a = a.(a^2-a)=(a-1).a.(a+1)
Ta thấy a-1;a;a+1 là 2 số nguyên liên tiếp nên có 1 số chia hết cho 3 => a^3-a = (a-1).a.(a+1) chia hết cho 3
Tương tự : b^3-b;c^3-c;d^3-d đều chia hết cho 3
=> a^3+b^3+c^3+d^3-(a+b+c+d) chia hết cho 3
Mà a^3+b^3+c^3+d^3 chia hết cho 3 => a+b+c+d chia hết cho 3
=> ĐPCM
k mk nha
<=> a^3+b^3+c^3+d^3 = 3c^3-15d^3 = 3.(c^3-5d^3) chia hết cho 3
Xét a^3-a = a.(a^2-a)=(a-1).a.(a+1)
Ta thấy a-1;a;a+1 là 2 số nguyên liên tiếp nên có 1 số chia hết cho 3 => a^3-a = (a-1).a.(a+1) chia hết cho 3
Tương tự : b^3-b;c^3-c;d^3-d đều chia hết cho 3
=> a^3+b^3+c^3+d^3-(a+b+c+d) chia hết cho 3
Mà a^3+b^3+c^3+d^3 chia hết cho 3 => a+b+c+d chia hết cho 3
=> ĐPCM
k
mk nha
:D
1, bài 384 sách nâng cao lớp 8 tập 2 trang 52
2, câu b bài 388 snc lớp 8