K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 4 2021

Lời giải:

$x^3-9y^2+9x-6y=1$

$\Leftrightarrow x^3+9x=9y^2+6y+1$

$\Leftrightarrow x(x^2+9)=(3y+1)^2$

Đặt $(x,x^2+9)=d$ thì suy ra $9\vdots d(*)$

$(3y+1)^2=x(x^2+9)\vdots d^2\Rightarrow 3y+1\vdots d$. Mà $(3y+1,3)=1$ nên $(3,d)=1(**)$

Từ $(*);(**)\Rightarrow d=1$, hay $x,x^2+9$ nguyên tố cùng nhau. 

$\Rightarrow \frac{x}{x^2+9}$ là phấn số tối giản.

 

7 tháng 4 2021

giúp em lun tìm x,y em cảm ơn nhiều

 

 

3 tháng 1 2020

Ta có \(\left(x+y\right)^3=\left(x-y-6\right)^2\left(1\right)\)

Vì x,y nguyên dương nên

\(\left(x+y\right)^3>\left(x+y\right)^2\)kết hợp (1) ta được:

\(\left(x-y-6\right)^2>\left(x+y\right)^2\Leftrightarrow\left(x+y\right)^2-\left(x-y-6\right)^2< 0\Leftrightarrow\left(x-3\right)\left(y+3\right)< 0\)

Mà y+3 >0 (do y>0)\(\Rightarrow x-3< 0\Leftrightarrow x< 3\)

mà \(x\inℤ^+\)\(\Rightarrow x\in\left\{1;2\right\}\)

*x=1 thay vào (1) ta có:

\(\left(1+y\right)^3=\left(1-y-6\right)^2\Leftrightarrow y^3+3y^2+3y+1=y^2+10y+25\Leftrightarrow\left(y-3\right)\left(y^2+5y+8\right)=0\)

mà \(y^2+5y+8=\left(y+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)

\(\Rightarrow y-3=0\Leftrightarrow y=3\inℤ^+\)

*y=2 thay vào (1) ta được: 

\(\left(2+y\right)^3=\left(2-y-6\right)^2\Leftrightarrow y^3+6y^2+12y+8=y^2+8y+16\Leftrightarrow y^3+5y^2+4y-8=0\)

Sau đó cm pt trên không có nghiệm nguyên dương.

Vậy x=1;y=3

3 tháng 10 2019

mình không biết là đúng không nhưng mình làm vậy này 
Biến đổi vế phải ta có :

VP=y^4-6y^3+11y^2-6y=(y-1)(y-2)(y-3)=(x-2019)^2

=> y-1 ,y-2, y-3 là 3 số nguyên liên tiếp 

mà tích của 3 số nguyên liên tiếp không thể là số chính phương 

=>{x-2019=0

     {y-1=0 hoặc y-2=0 hoặc y-3 =0 

vậy ta có các cặp x,y là (2019:1) hoặc (2019:2)hoặc (2019;3)

9 tháng 7 2022

@vvvv sai rồi nha. 

6 tháng 8 2020

Để cho gọn, đặt {x2=ay2=b

(a+4b+28)2−17a2−17b2=238b+833

\(\Leftrightarrow\)a2+16b2+784+8ab+56a+224b−17a2−17b2=238b+833

\(\Leftrightarrow\)16a2+b2+49−8ab−56a+14b=0

\(\Leftrightarrow\)(4a−b−7)2=0 ⇔4a−b−7=0⇔4x2−y2−7=0

\(\Leftrightarrow\)(2x−y)(2x+y)=7

Do 2x+y>2x−y với mọi x, y nguyên dương và 2x+y>0 với mọi x, y nguyên dương

\(\Rightarrow\){2x−y=12x+y=7 \(\Rightarrow\){x=2y=3

Vậy pt có cặp nghiệm nguyên dương duy nhất (x;y)=(2;3)

#Shinobu Cừu

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...