K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

b1 

a sai

b sai

c sai

d sai

20 tháng 10 2017

Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)

Thêm ab vào hai vế của (*) : ad + ab < bc + ab

                                             => a(b+d) < b(a+c)

                                            => \(\frac{a}{b}< \frac{a+c}{b+d}\) 

                                            => x < z (1)

Thêm cd vào hai vế của (*): ad + cd < bc + cd

                                          => d(a + c) < c(b + d)

                                          => \(\frac{a+c}{b+d}< \frac{c}{d}\)  

                                          => z < y (2)

Từ (1) và (2) => x < z < y

7 tháng 11 2017

Vì x<y⇒ab <cd ⇒ad<bc (*)

Thêm ab vào hai vế của (*) : ad + ab < bc + ab

                                             => a(b+d) < b(a+c)

                                            => ab <a+cb+d  

                                            => x < z (1)

Thêm cd vào hai vế của (*): ad + cd < bc + cd

                                          => d(a + c) < c(b + d)

                                          => a+cb+d <cd   

                                          => z < y (2)

Từ (1) và (2) => x < z < y

21 tháng 10 2020

d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)

\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)

\(\Rightarrow\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)

Vậy \(x=-3\)\(y=-4\)\(z=-5\)

e) \(x\left(x+y+z\right)=-12\)\(y\left(y+z+x\right)=18\)\(z\left(z+x+y\right)=30\)

\(\Rightarrow x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=-12+18+30\)

\(\Leftrightarrow\left(x+y+z\right)^2=36\)\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)

TH1: Nếu \(x+y+z=-6\)\(\Rightarrow x=\frac{-12}{-6}=2\)\(y=\frac{18}{-6}=-3\)\(z=\frac{30}{-6}=-5\)

TH2: Nếu \(x+y+z=6\)\(\Rightarrow x=\frac{-12}{6}=-2\)\(y=\frac{18}{6}=3\)\(z=\frac{30}{6}=5\)

Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn là \(\left(2;-3;-5\right)\)\(\left(-2;3;5\right)\)

23 tháng 5 2016

2.P=\(\frac{3-a}{a+10}\)

a, để P>0 

TH1 3-a>0 và a+10 >0

=> a<3 và a> -10

=> -10<a<3

TH2 3-a<0 và a+10<0

=> a>3 và a<-10(vô lý)

Vậy để P>0 thì -10<a<3

b.để P<0

TH1 3-a<0 và a+10>0

        a>3 và a>-10 

         Vậy a>3

TH2 3-a>0 và a+10<0

   => a<3 và a<-10

Vậy a<-10

vậy để P<0 thì a >3 hoặc a<-10

23 tháng 5 2016

bài 3.

a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)

Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)

b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)

Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)

c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)

Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)

28 tháng 8 2019

đây là bài tập trong SGK bạn chỉ cần tra mạng thôi

28 tháng 8 2019

Tham khảo Giải bài 1,2,3,4,5 trang 7,8 SGK Toán 7 tập 1: Tập hợp Q các số hữu tỉ

9 tháng 6 2016

1.a) Ta có:

\(\frac{18}{-25}=-\frac{18.12}{25.12}=-\frac{216}{300}< -\frac{213}{300}\)

Vậy \(-\frac{213}{300}>\frac{18}{-25}\)

b) Ta có:

\(0,75>0>-\frac{3}{4}\)

Vậy \(0,75>-\frac{3}{4}\)

2, * Khi a, b cùng dấu thì \(\frac{a}{b}>0\)

* Khi a, b khác dấu thì \(\frac{a}{b}< 0\)

Đây là kiến thức cơ bản !

15 tháng 7 2017

ai có biết câu trả lời này thì nhắn lại cho mình

2 tháng 8 2017

Ta có : z = \(\frac{m}{n}\)\(\frac{\frac{a+c}{2}}{\frac{b+d}{2}}=\frac{a+c}{b+d}=\frac{2m}{2n}\)

Nếu x < y thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)\(\Rightarrow\frac{a}{b}< \frac{2m}{2n}< \frac{c}{d}\)

\(\Rightarrow\frac{a}{b}< \frac{m}{n}< \frac{c}{d}\)\(\Rightarrow x< z< y\)

Nếu x > y thì : \(\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)\(\Rightarrow\frac{a}{b}>\frac{2m}{2n}>\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}>\frac{m}{n}>\frac{c}{d}\)\(\Rightarrow x>z>y\)

Vậy ...

1 tháng 8 2017

a) Áp dụng tính chất ..., ta có :

 \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{8}{4}=2\)

\(\Rightarrow x=4;y=6;z=8\)

b)2x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{2}\)\(\Rightarrow\frac{x}{20}=\frac{y}{10}\)( 1 )

4y =5z \(\Rightarrow\frac{y}{5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{10}=\frac{z}{8}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{8}\)

Áp dụng tính chất ..., ta có :

\(\frac{x}{20}=\frac{y}{10}=\frac{z}{8}=\frac{x-y+2z}{20-10+16}=\frac{40}{26}=\frac{20}{13}\)

\(\Rightarrow x=\frac{400}{13};y=\frac{200}{13};z=\frac{160}{13}\)

còn lại tương tự