Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(7x^2-13xy-2y^2=0\)
\(7x^2-14xy+xy-2y^2=0\)
7x(x-2y)+y(x-2y)=0
(7x+y)(x-2y)=0
=>. 7x+y=0 hoặc x-2y=0
=> y=-7x hoặc x=2y
Thay lần lượt vào A là OK nha bn !
\(VT=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\ge4+2+5=11\)
co nhieu cau tuong tu tren mang ban tu tm hieu nhe
\(\frac{1}{x}+\frac{1}{y}=2-\frac{1}{z}\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}=4+\frac{1}{z^2}-\frac{4}{z}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=-\frac{4}{z}\) \(\Rightarrow\frac{1}{z}=-\frac{1}{4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}-\frac{1}{4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)=2\Rightarrow\frac{1}{4x^2}-\frac{1}{x}+1+\frac{1}{4y^2}-\frac{1}{y}+1=0\)
\(\Rightarrow\left(\frac{1}{2x}-1\right)^2+\left(\frac{1}{2y}-1\right)^2=0\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x}-1=0\\\frac{1}{2y}-1=0\end{matrix}\right.\)
\(\Rightarrow x=y=\frac{1}{2}\Rightarrow\frac{1}{z}=2-\left(\frac{1}{x}+\frac{1}{y}\right)=-2\Rightarrow z=-\frac{1}{2}\)
\(\Rightarrow P=\left(\frac{1}{2}+1-\frac{1}{2}\right)^{2018}=1^{2018}=1\)