K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2016

Theo t/c dãy tỉ số=nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=>a=b=c=d

Thay vào biểu thức A ,ta đc:

\(A=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)

\(=\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)

Vậy A=2

 

16 tháng 6 2016

Vì a/b=1=>a=b;b/c=1=>b=c;c/d=1=> c=d;d/a=1=>a=d

=>a=b=c=d

OK?~_~

Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)

Không mất tính tổng quát giả sử \(a\ge b\ge c\ge d\)=>\(a^2\ge b^2\ge c^2\ge d^2\)

=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\le\frac{1}{d^2}\)

=>\(A\le\frac{4}{d^2}\)=>\(d^2\le4\)=>\(d\in\text{ }\text{{}\pm1,\pm2\text{ }\)

Xét \(d=\pm1\)=> vô lí

Xét d=\(\pm\)2=> a=b=c=d=\(\pm\)2

=> M=ab+cd=4+4=8

18 tháng 3 2017

\(\frac{2a-b}{a+b}=\frac{2}{3}\)

\(\Leftrightarrow6a-3b=2a+2b\)

\(\Leftrightarrow6a-2a=2b+3b\)

\(\Leftrightarrow4a=5b\)

\(\frac{b-c+a}{2a-b}=\frac{2}{3}\)

\(\Leftrightarrow4a-2b=3b-3c+3a\)

\(\Leftrightarrow4a-3a=3b-3c+2b\)

\(\Leftrightarrow a=5b-3c\)

\(\Leftrightarrow a=4a-3c\)

\(\Leftrightarrow3a=3c\)

\(\Rightarrow a=c\)

\(\Rightarrow P=\frac{\left(4a+4a\right)^5}{\left(4a+4a\right)^2\left(a+3a\right)^3}=\frac{\left(8a\right)^5}{\left(8a\right)^2\left(4a\right)^3}=\frac{\left(8a\right)^3}{\left(4a\right)^3}=\frac{8^3}{4^3}=2^3=8\)

18 tháng 3 2017

khó quá chịu

16 tháng 6 2016

Từ tỷ lệ thức:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{a+b+c+d}=1.\)do a,b,c,d dương

vậy,

A = 4*1/2 = 2.

8 tháng 11 2015

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

\(\Rightarrow a=b=c=d\)

\(M=1+1+1+1=4\)