K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 4 2018

Lời giải:

Ta có:

\(M=\sqrt{a^2+abc}+\sqrt{b^2+abc}+\sqrt{c^2+abc}+9\sqrt{abc}\)

\(M=\sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}+9\sqrt{abc}\)

Áp dụng BĐT Bunhiacopxky:

\([\sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}]^2\leq (a+b+c)(a+bc+b+ac+c+ab)\)

\(\Leftrightarrow \sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}\leq \sqrt{1+ab+bc+ac}\)

Theo hệ quả của BĐT AM-GM: \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\)

\(\Rightarrow \sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}\leq \frac{2\sqrt{3}}{3}(1)\)

AM-GM: \(a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}\Rightarrow 9\sqrt{abc}\leq \sqrt{3}(2)\)

Từ (1);(2) suy ra: \(M\leq \frac{2\sqrt{3}}{3}+\sqrt{3}=\frac{5\sqrt{3}}{3}\)

Vậy \(M_{\max}=\frac{5\sqrt{3}}{3}\) . Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

14 tháng 1 2020

Từ giả thiết ta có: \(1=a+b+c\ge3\sqrt[3]{abc}\Rightarrow abc\le\frac{1}{27}\)

Áp dụng BĐT AM - GM:

\(P=\frac{\sqrt{3}}{2}.\sqrt{\frac{4}{3}.a\left(a+bc\right)}+\frac{\sqrt{3}}{2}.\sqrt{\frac{4}{3}.b\left(b+ca\right)}+\frac{\sqrt{3}}{2}.\sqrt{\frac{4}{3}.c\left(c+ab\right)}+9\sqrt{abc}\)\(\le\frac{\sqrt{3}}{2}.\left(\frac{\frac{7}{3}a+bc+\frac{7}{3}b+ca+\frac{7}{3}c+ab}{2}\right)+9\sqrt{abc}\)

\(=\frac{\sqrt{3}}{2}.\left[\frac{\frac{7}{3}\left(a+b+c\right)+ab+bc+ca}{2}\right]+9\sqrt{abc}\)

\(=\frac{\sqrt{3}}{2}.\left(\frac{7}{6}+\frac{ab+bc+ca}{2}\right)+9\sqrt{abc}\)

Áp dụng BĐT quen thuộc \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)

Khi đó: \(P\le\frac{\sqrt{3}}{2}.\left(\frac{7}{6}+\frac{\frac{1}{3}}{2}\right)+9\sqrt{\frac{1}{27}}=\frac{5\sqrt{3}}{3}\)

\(\Rightarrow min_P=\frac{5\sqrt{3}}{3}\Leftrightarrow a=b=c=\frac{1}{3}\)

8 tháng 7 2020

\(b^4+c^4-bc\left(b^2+c^2\right)=\left(b^2+bc+c^2\right)\left(b-c\right)^2\)

\(\Rightarrow b^4+c^4\ge bc\left(b^2+c^2\right)\)

Tương tự\(\Rightarrow\Sigma_{cyc}\frac{a}{a+b^4+c^4}\le\Sigma_{cyc}\frac{a}{a+bc\left(b^2+c^2\right)}=\Sigma_{cyc}\frac{a}{bc\left(a^2+b^2+c^2\right)}=\frac{1}{a^2+b^2+c^2}\Sigma_{cyc}\frac{a}{bc}\)

\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2+b^2+c^2}{abc}=a^2+b^2+c^2\)

\(\Rightarrow\frac{1}{a^2+b^2+c^2}\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)=1\)

oke rồi he

8 tháng 7 2020

@Nub :v

Áp dụng Bunhiacopski ta dễ có:

\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+2a}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự:

\(\frac{b}{a^4+c^4+b}\le\frac{b^4+2b}{\left(a^2+b^2+c^2\right)^2};\frac{c}{a^4+b^4+c}\le\frac{c^4+2c}{\left(a^2+b^2+c^2\right)^2}\)

Cộng lại:

\(A\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)

Ta đi chứng minh:

\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

Cái này luôn  đúng theo Cauchy

Đẳng thức xảy ra tại a=b=c=1

AH
Akai Haruma
Giáo viên
10 tháng 10 2017

Từng sau nếu tag bạn tag tên dưới câu trả lời nhé, tag thế này không nhận được thông báo đâu .

Bài này tốn sức quá, đau đầu khocroi

Lời giải:

Sử dụng \(\sum\) biểu hiện tổng các hoán vị nhé.

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{a^2}{a\sqrt{(b+2)(c+2)}}+\frac{b^2}{b\sqrt{(c+2)(a+2)}}+\frac{c^2}{c\sqrt{(a+2)(b+2)}}\geq \frac{(a+b+c)^2}{\sum a\sqrt{(b+2)(c+2)}}\)

Tiếp tục Cauchy-Schwarz:

\((\sum a\sqrt{(b+2)(c+2)})^2\leq (ab+2a+bc+2b+ac+2c)(ac+2a+ba+2b+bc+2c)\)

\(\Leftrightarrow \sum a\sqrt{(b+2)(c+2)}\leq (ab+bc+ac+2a+2b+2c)\)

\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{ab+bc+ac+2(a+b+c)}\)

Ta sẽ đi chứng minh \(\frac{(a+b+c)^2}{ab+bc+ac+2(a+b+c)}\geq 1\Leftrightarrow (a+b+c)^2\geq ab+bc+ac+2(a+b+c)\)

\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ac\geq 2(a+b+c)\)

\(\Leftrightarrow (a^2+b^2+c^2)+(a+b+c)^2\geq 4(a+b+c)\)

\(\Leftrightarrow 4-abc+(a+b+c)^2\geq 4(a+b+c)\Leftrightarrow (a+b+c-2)^2\geq abc\)

\(\Leftrightarrow a+b+c\geq \sqrt{abc}+2\)

Do \(a^2+b^2+c^2+abc=4\Rightarrow \)

tồn tại $x,y,z>0$ sao cho:\((a,b,c)=\left ( 2\sqrt{\frac{xy}{(z+x)(z+y)}};2\sqrt{\frac{yz}{(x+y)(x+z)}};2\sqrt{\frac{xz}{(y+x)(y+z)}} \right )\)

Khi đó , thực hiện vài bước rút gọn, BĐT cần chứng minh chuyển về:

\(\sum \sqrt{xy(x+y)}\geq \sqrt{2xyz}+\sqrt{(x+y)(y+z)(x+z)}\)

Bình phương hai vế:

\(\Leftrightarrow \sum xy(x+y)+2\sqrt{xy^2z(x+y)(y+z)}\geq 2xyz+\prod (x+y)+2\sqrt{2xyz(x+y)(y+z)(x+z)}\)

\(\Leftrightarrow \sum\sqrt{xy^2z(x+y)(y+z)}\geq 2xyz+\sqrt{2xyz(x+y)(y+z)(x+z)}\)

\(\Leftrightarrow \sum \sqrt{y(y+x)(y+z)}\geq 2\sqrt{xyz}+\sqrt{2(x+y)(y+z)(x+z)}\) \((\star)\)

Đặt biểu thức vế trái là $A$

\(A^2=\sum y(y+x)(y+z)+2\sum\sqrt{[y(y+x)(y+z)][x(x+y)(x+z)]}\)

\(A^2=\sum x^3+\sum xy(x+y)+3xyz+2\sum \sqrt{[(x^2(x+y+z)+xyz][y^2(x+y+z)+xyz]}\)

Áp dụng BĐT C-S : \([x^2(x+y+z)+xyz][y^2(x+y+z)+xyz]\geq [xy(x+y+z)+xyz]^2\)

\(\Rightarrow A^2\geq \sum x^3+\sum xy(x+y)+3xyz+2\sum [xy(x+y+z)+xyz]\)

\(\Leftrightarrow A^2\geq \sum x^3+3\sum xy(x+y)+15xyz\)

Theo BĐT Schur: \(\sum x^3+3xyz\geq \sum xy(x+y)\)

\(\Rightarrow A^2\geq 4\sum xy(x+y)+12xyz=4[\sum xy(x+y)+3xyz]=4(x+y+z)(xy+yz+xz)\)

\(\Leftrightarrow A\geq 2\sqrt{(x+y+z)(xy+yz+xz)}\)

Ta cần chứng minh \(2\sqrt{(x+y+z)(xy+yz+xz)}\geq 2\sqrt{xyz}+\sqrt{2(x+y)(y+z)(x+z)}\) (1)

Đặt \(\sqrt{(x+y+z)(xy+yz+xz)}=t\), bằng AM-GM dễ thấy \(t^2\geq 9xyz\)

\((1)\Leftrightarrow 2t\geq 2\sqrt{xyz}+\sqrt{2(t^2-xyz)}\)

\(\Leftrightarrow 4t^2\geq 4xyz+2(t^2-xyz)+4\sqrt{2xyz(t^2-xyz)}\)

\(\Leftrightarrow t^2\geq xyz+2\sqrt{2xyz(t^2-xyz)}\) (2)

Áp dụng AM-GM: \(2\sqrt{xyz(t^2-xyz)}=\sqrt{8xyz(t^2-xyz)}\leq \frac{8xyz+t^2-xyz}{2}=\frac{7}{2}xyz+\frac{t^2}{2}\)

Và \(xyz\leq \frac{t^2}{9}\)

\(\Rightarrow xyz+2\sqrt{2xyz(t^2-xyz)}\leq t^2\)

Do đó (2) đúng kéo theo (1) đúng kéo theo (*) đúng nên ta có đpcm.

Dấu bằng xảy ra khi $a=b=c=1$

10 tháng 10 2017

Thánh giỏi quá. Em xin bái phục!

8 tháng 7 2020

Áp dụng AM - GM 

\(P=\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{c^2+a^2}}\ge\frac{1}{\sqrt{2ab}}+\frac{1}{\sqrt{2bc}}+\frac{1}{\sqrt{2ca}}\)

\(abc=a+b+c+2\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)+\left(b+1\right)\left(c+1\right)+\left(c+1\right)\left(a+1\right)\ge\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)

Với mọi số thực x,y,z ta có ngay:

\(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

\(\Leftrightarrow\frac{1}{1+\frac{y+z}{x}}+\frac{1}{1+\frac{z+x}{y}}+\frac{1}{1+\frac{x+y}{z}}=1\)

Khi đó ta có thể đặt được \(\left(a;b;c\right)\rightarrow\left(\frac{y+z}{x};\frac{z+x}{y};\frac{x+y}{z}\right)\) 

Thay vào thì dễ có:

\(\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(z+y\right)\left(x+y\right)}}\)

\(\le\frac{1}{2}\Sigma\left(\frac{x}{x+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)

Vậy ...........................

22 tháng 7 2018

Từ giả thiết \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\Rightarrow xy+yz+xz=1\left(x=\dfrac{1}{a};y=\dfrac{1}{b};z=\dfrac{1}{c}\right)\)

\(A=\sum\dfrac{1}{\sqrt{1+a^2}}=\sum\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{a^2}+1}}=\sum\dfrac{x}{\sqrt{x^2+1}}=\sum\dfrac{x}{\sqrt{x^2+xy+yz+xz}}=\sum\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{1}{2}\sum\dfrac{x}{x+y}+\dfrac{x}{x+z}=\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

$(a^3+1)(a+1)\geq (a^2+1)^2\Rightarrow a^3+1\geq \frac{(a^2+1)^2}{a+1}; a+1\leq \sqrt{2(a^2+1)}$

$\Rightarrow \frac{a^3+1}{b\sqrt{a^2+1}}\geq \frac{\sqrt{(a^2+1)^3}}{b(a+1)}\geq \frac{a^2+1}{\sqrt{2}b}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

$\text{VT}\geq \frac{a^2+1}{\sqrt{2}b}+\frac{b^2+1}{\sqrt{2}c}+\frac{c^2+1}{\sqrt{2}a}$

Bài toán sẽ được chứng minh khi ta chỉ ra được: $\frac{a^2+1}{\sqrt{2}b}+\frac{b^2+1}{\sqrt{2}c}+\frac{c^2+1}{\sqrt{2}a}\geq \sqrt{2}(a+b+c)$

$\Leftrightarrow \frac{a^2+1}{b}+\frac{b^2+1}{c}+\frac{c^2+1}{a}\geq 2(a+b+c)$

$\Leftrightarrow ab^3+bc^3+ca^3+ab+bc+ac\geq 2abc(a+b+c)(*)$

Thật vậy, theo BĐT AM-GM:

$ab^3+bc+a^2b^2c^2\geq 3ab^2c$. Tương tự với $bc^3+ca+a^2b^2c^2\geq 3abc^2; ca^3+ab+a^2b^2c^2\geq 3a^2bc$

Cộng theo vế và thu gọn:

$ab^3+bc^3+ca^3+ab+bc+ac\geq 3abc(a+b+c-abc)(1)$

Mà: $(a+b+c)^3\geq 27abc\geq 27(abc)^3$ (do $abc\leq 1$) nên $a+b+c\geq 3abc(2)$

Từ $(1); (2)\Rightarrow ab^3+bc^3+ca^3+ab+bc+ac\geq 2abc(a+b+c)$. BĐT $(*)$ được chứng minh.

Bài toán hoàn tất.

NV
25 tháng 10 2019

\(a+b+c=\frac{1}{abc}\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(P=\sum\frac{1}{\sqrt{1+\frac{1}{x^2}}}=\sum\frac{x}{\sqrt{1+x^2}}=\sum\frac{x}{\sqrt{x^2+xy+yz+zx}}=\sum\frac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}\)

\(\Rightarrow P\le\frac{1}{2}\sum\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\) hay \(a=b=c=\sqrt{3}\)

14 tháng 12 2020

Ta thấy: \(\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}=\Sigma_{cyc}\frac{a^2+bc}{\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}}\)

Ta lại có: \(\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}\le\frac{\left(a^2b+b^2c\right)+\left(bc^2+ca^2\right)+\left(c^2a+ab^2\right)}{3}=\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)

\(\Leftrightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{\Sigma_{cyc}\left(a^2+bc\right)}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{a^2+b^2+c^2+ab+bc+ca}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}\)

Nhận thấy: \(A=\left(a+b+c\right)\left(a^2+b^2+c^2+ab+bc+ca\right)=a^3+b^3+c^3+3abc+2\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)

Theo Schur: \(a^3+b^3+c^3+3abc\ge\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)

\(\Leftrightarrow A\ge3\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)

\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{3\Sigma_{cyc}\left(ab\left(a+b\right)\right)}{\frac{1}{3}\left(a+b+c\right)\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{9}{a+b+c}\)