Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(1=\frac{1}{a}+\frac{4}{b}+\frac{9}{c}=\frac{9}{9a}+\frac{36}{9b}+\frac{9}{c}\geq \frac{(3+6+3)^2}{9a+9b+c}\)
\(\Rightarrow P\geq 144\)
Vậy $P_{\min}=144$
Dấu "=" xảy ra khi $\frac{3}{9a}=\frac{6}{9b}=\frac{3}{c}$ hay $a=4; b=8; c=36$
ta có \(T=\frac{1}{2}\left(1-\frac{a^2}{2+a^2}+1-\frac{b^2}{2+b^2}+1-\frac{c^2}{2+c^2}\right)=\frac{1}{2}\left[3-\left(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\right)\right]\)
ta chứng minh rằng \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge1\)khi đó ta sẽ có \(T\le1\)
thật vậy, áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\)
ta cần chứng minh rằng \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\ge1\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge a^2+b^2+c^2+6\)
\(\Leftrightarrow ab+bc+ca\ge3\)
thật vậy, từ giả thiết ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\Leftrightarrow ab+bc+ca\le abc\left(a+b+c\right)\left(1\right)\)
mà \(abc\left(a+b+c\right)\le\frac{\left(ab+bc+ca\right)^2}{3}\)
từ (1) ta có \(\frac{ab+bc+ca}{3}\le\frac{\left(ab+bc+ca\right)^2}{3}\Leftrightarrow ab+bc+ca\ge3\left(đpcm\right)\)
vậy maxT=1 khi a=b=c=1
+)\(\frac{3}{4}\ge a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow\frac{1}{8}\ge abc\)
+) \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(32abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)-24abc\)
\(\ge4\sqrt[4]{\frac{32}{abc}}-24abc\ge4\sqrt[4]{\frac{32}{\frac{1}{8}}}-3=16-3=13\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{2}\)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a^2}{a+2b}+\frac{b^2}{2a+b}\geq \frac{(a+b)^2}{a+2b+2a+b}=\frac{(a+b)^2}{3(a+b)}=\frac{a+b}{3}=\frac{1}{3}\) (đpcm)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{a}{a+2b}=\frac{b}{2a+b}\\ a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)
Bài 2:
Vì $x+y=2019$ nên $2019-x=y; 2019-y=x$
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\geq \frac{(x+y)^2}{x\sqrt{y}+y\sqrt{x}}\)
Mà theo BĐT AM-GM và Bunhiacopxky:
\((x\sqrt{y}+y\sqrt{x})^2\leq (xy+yx)(x+y)=2xy(x+y)\leq \frac{(x+y)^2}{2}.(x+y)=\frac{(x+y)^3}{2}\)
\(\Rightarrow P\geq \frac{(x+y)^2}{\sqrt{\frac{(x+y)^3}{2}}}=\sqrt{2(x+y)}=\sqrt{2.2019}=\sqrt{4038}\)
Vậy \(P_{\min}=\sqrt{4038}\Leftrightarrow x=y=\frac{2019}{2}\)
\(a+b+c=3\)\(\Rightarrow c=3-a-b\Rightarrow-c=a+b-3\)
Ta có:
\(P=\frac{1}{a}+\frac{1}{b}-c=\frac{1}{a}+\frac{1}{b}+a+b-3\)
\(P=\sqrt{\frac{1}{a}}^2-2.\sqrt{\frac{1}{a}}.\sqrt{a}+\sqrt{a}^2+\sqrt{\frac{1}{b}^2}-2.\sqrt{\frac{1}{b}}.\sqrt{b}^2+1\)
\(P=\left(\sqrt{\frac{1}{a}}-\sqrt{a}\right)^2+\left(\sqrt{\frac{1}{b}}-\sqrt{b}\right)^2+1\ge1\)
Ta có:
\(\frac{1+a}{1+9b^2}=a+1-\frac{9b^2\left(a+1\right)}{1+9b^2}\ge a+1-\frac{9b^2\left(a+1\right)}{2\sqrt{9b^2}}=a+1-\frac{3b\left(a+1\right)}{2}\)
Tương tự: \(\frac{1+b}{1+9c^2}\ge b+1-\frac{3c\left(1+b\right)}{2}\) ; \(\frac{1+c}{1+9a^2}\ge c+1-\frac{3a\left(c+1\right)}{2}\)
Cộng vế với vế:
\(Q\ge4-\frac{3}{2}\left(ab+bc+ca+a+b+c\right)=\frac{5}{2}-\frac{3}{2}\left(ab+bc+ca\right)\)
\(Q\ge\frac{5}{2}-\frac{1}{2}\left(a+b+c\right)^2=2\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)