K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2016

Áp dụng BĐT AM-GM  ta có:

\(\hept{\begin{cases}a+1\ge2\sqrt{a}\left(1\right)\\b+1\ge2\sqrt{b}\left(2\right)\\c+1\ge2\sqrt{c}\left(3\right)\end{cases}}\)

Nhân theo vế của (1), (2), (3) ta có:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2^3\sqrt{abc}=8\)

Dấu "=" xảy ra khi \(a=b=c=1\)

28 tháng 3 2016

Áp dụng bất đẳng thức AM - GM cho từng cặp số không âm (với  \(a,b,c>0\)), ta có:

\(a+1\ge2\sqrt{a}\)  \(\left(1\right)\)

\(b+1\ge2\sqrt{b}\)  \(\left(2\right)\)

\(c+1\ge2\sqrt{c}\)  \(\left(3\right)\)

Nhân từng vế  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\), ta được:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)  (do  \(abc=1\))

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c=1\)

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

22 tháng 2 2016

xét vế trái ta có (nhân vào )

a/a + a/b + a/c + b/a + b/b + b/c + c/a + c/b +c/c  >= 9

<=> 3 + ( a/b +b/a ) + (b/c + c/b )+ (c/a +a/c) >=9

áp dụng bất đẳng thức phụ : a/b + b/a >=2 , b/c + c/b >= 2 , a/c +c/a >=2 ta được 

3 +2 +2+2 >=9

=> đpcm

ta CM bất đẳng thức phụ a/b +b/a >=2 nhé !

vì a/b +b/a >=2 nên ta xét hiệu:

a/b + b/c - 2 >= 0

ta quy đồng mẫu các phân số :

<=> a/ab + b2/ab - 2ab/ab >= 0

<=> (a+ b2 - 2ab) / ab = (a-b)2 /ab >=0

dấu = xảy ra khi a-b =0 <=> a=b

nên a/b + b/a - 2 >=0

<=> a/b + b/a >= 2  dấu = xảy ra khi a=b  

22 tháng 2 2016

giúp mk nha mk gấp lắm

9 tháng 3 2021

grsgrsg

9 tháng 3 2021

omgggggggggggggomgomgomgggomggomgo

29 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

Dấu "=" xảy ra <=> a= b = c = 1/3

(bđt Svacxo lên mạng tra nha)

29 tháng 4 2019

Áp dụng BĐT Cô - Si với ba số dương a , b , c , ta có

\(a+b+c\ge3\sqrt[3]{abc}\)

Áp dụng BĐT Cô - Si với ba số dương \(\frac{1}{a},\frac{1}{b},\frac{1}{c}\), ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân hai vế của Bất đẳng thức, ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Dấu = sảy ra \(\Leftrightarrow\hept{\begin{cases}a+b+c=1\\a=b=c\end{cases}\Rightarrow a=b=c=\frac{1}{3}}\)

23 tháng 3 2016

đoạn trên nhầm mà là 1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)vì a+b+c=1

23 tháng 3 2016

Vì a+b+c=1=>(a+b+c)=(1/a+1/b+1/c)*(a+b+c)

=1+1+1+a/b+b/a+a/c+c/a+b/c+c/b

Áp dung cô si cho a/b+b/a>hoac bang 2

Tg tự a/c+c/a:b/c+c/b cũng vậy

=>(a+b+c)(1/a+1/b+1/c)>hoac bang9

p =.1/a+1/b+1/c>hoac bang9