Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopxky :
\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)
\(\Rightarrow9a^3+3b^2+c\ge\frac{1}{\frac{1}{9a}+\frac{1}{3}+c}\)
\(\Rightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)
Thực hiện tương tự với các phân thức khác và cộng theo vế :
\(P\le\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{a+b+c}{3}+\left(ab+bc+ac\right)\)
\(P\le\frac{2}{3}+ab+bc+ac\)
Theo hệ quả quen thuộc của BĐT AM - GM :
\(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(\Rightarrow P\le\frac{2}{3}+\frac{1}{3}=1\Rightarrow P_{max}=1\)
Vậy GTLN của P là 1 khi \(a=b=c=\frac{1}{3}\)
Áp dụng bất đẳng thức Cô-si, ta có: \(\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}=\left(a-\frac{9ab^2}{1+9b^2}\right)+\left(b-\frac{9bc^2}{1+9c^2}\right)+\left(c-\frac{9ca^2}{1+9a^2}\right)\)\(\ge\left(a-\frac{9ab^2}{6b}\right)+\left(b-\frac{9bc^2}{6c}\right)+\left(c-\frac{9ca^2}{6a}\right)=\left(a+b+c\right)-\frac{3\left(ab+bc+ca\right)}{2}\)\(\ge\left(a+b+c\right)-\frac{\left(a+b+c\right)^2}{2}=\frac{1}{2}\)
Đẳng thức xảy ra khi a = b = c = 1/3
\(VT=\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}\)
\(VT=a-\frac{9ab^2}{1+9b^2}+b-\frac{9bc^2}{1+9c^2}+c-\frac{9ca^2}{1+9a^2}\)
\(VT\ge a+b+c-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)
\(VT\ge1-\frac{3}{2}\left(ab+bc+ca\right)\)
\(VT\ge1-\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)