K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

1/ \(a^2-b^2+c^2\ge\left(a-b+c\right)^2\)

\(\Leftrightarrow bc-ac-b^2+ab\ge0\)

\(\Leftrightarrow\left(bc-ac\right)+\left(ab-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\ge0\)(đúng)

Vì \(\hept{\begin{cases}a\ge b\\b\ge c\end{cases}}\)

2/ \(a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)

\(\Leftrightarrow-d^2+cd-bd+ad+bc-ac-b^2+ab\ge0\)

\(\Leftrightarrow\left(dc-d^2\right)+\left(ad-bd\right)+\left(bc-ac\right)+\left(ba-b^2\right)\ge0\)

\(\Leftrightarrow d\left(c-d\right)+d\left(a-b\right)+\left(a-b\right)\left(b-c\right)\ge0\)

Đúng vì \(a\ge b\ge c\ge d\ge0\)

2 tháng 12 2016

cậu là ai trả lời đi ròi tôi nói cho

2 tháng 12 2016

vào các câu hỏi của hoàng tử lớp học mà xem nhóc ạ

2 tháng 11 2017

ai trả lời nhiều tớ sẽ dùng 4 nick k cho nha cảm ơn

29 tháng 12 2018

a.

\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

\(\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)

\(\Leftrightarrow a^4+b^4\ge ab^3+a^3b\)

\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(*)

\(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\)

Suy ra (*) đúng => đpcm

Dấu "=" xảy ra khi a = b

29 tháng 12 2018

b.

\(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(\Leftrightarrow3a^4+3b^4+3c^4\ge a^4+ab^3+ac^3+a^3b+b^4+bc^3+a^3c+b^3c+c^4\)

\(\Leftrightarrow2a^4+2b^4+2c^4\ge ab^3+a^3b+b^3c+bc^3+ca^3+c^3a\)

\(\Leftrightarrow\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge\left(a^3b+ab^3\right)+\left(b^3c+bc^3\right)+\left(c^3a+ca^3\right)\)

Theo câu a. thì điều này đúng

Dấu "=" khi a=b=c

19 tháng 7 2017

dễ lăm chỉ cần áp dụng bài toán phụ a2+b2>=2ab là ra chúc bạn làm được bài tốt nhé mình chỉ gợi ý cho thôi

19 tháng 7 2017

tương đương too

11 tháng 2 2019

Câu b search google bđt Min-cốp-xki thẳng tiến

4 tháng 2 2019

Chị ơi!

3 tháng 5 2018

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

3 tháng 5 2018

BPT?