K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

\(\dfrac{a}{b+c+d}=\dfrac{b}{c+a+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\)

+)Xét a+b+c+d=0 thì a+d=-c-d

b+c=-d-a

c+d=-b-a

d+a=-b-c

Do đó:

\(P=\dfrac{-c-d}{c+d}+\dfrac{-a-b}{a+b}+\dfrac{-b-c}{b+c}+\dfrac{-d-a}{a+d}\\ =-1+-1+-1+-1=-4\)

+)Xét a+b+c+d khác 0

áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+c+d}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)

=>\(a=\dfrac{1}{3}\left(d+b+c\right)\)

\(b=\dfrac{1}{3}\left(a+c+d\right)\)

\(c=\dfrac{1}{3}\left(a+b+d\right)\)

\(d=\dfrac{1}{3}\left(a+b+c\right)\)

Bạn thay vào r tính

23 tháng 10 2017

Ta có : \(\dfrac{a}{b+c+d}=\dfrac{b}{c+d+a}=\dfrac{c}{d+a+b}=\dfrac{d}{a+b+c}\)

\(\Rightarrow\)\(\dfrac{a}{b+c+d}+1=\dfrac{b}{c+d+a}+1=\dfrac{c}{d+a+b}+1=\dfrac{d}{a+b+c}+1\)

\(\Rightarrow\)\(\dfrac{a+b+c+d}{b+c+d}=\dfrac{b+c+d+a}{c+d+a}=\dfrac{c+d+a+b}{d+a+b}=\dfrac{d+a+b+c}{a+b+c}\)

TH1 : \(a+b+c+d\ne0\)\(\Rightarrow\) \(a=b=c=d\)

\(\Rightarrow\) P= \(\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{b+a}+\dfrac{d+a}{b+c}=1+1+1+1=4\)

TH2 : \(a+b+c+d=0\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{b+a}+\dfrac{d+a}{b+c}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

NV
3 tháng 1 2019

TH1:

\(\dfrac{a}{b+c+d}=\dfrac{b}{c+d+a}=\dfrac{c}{d+a+b}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}3a=b+c+d\\3b=a+c+d\\3c=a+b+d\\3d=a+b+c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3\left(a-b\right)=b-a\\3\left(b-c\right)=c-b\\3\left(c-d\right)=d-c\\3\left(d-a\right)=a-d\end{matrix}\right.\) \(\Rightarrow a=b=c=d\)

\(\Rightarrow P=\dfrac{2a}{2a}+\dfrac{2a}{2a}+\dfrac{2a}{2a}+\dfrac{2a}{2a}=1+1+1+1=4\)

TH2: \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a-b}{a-a}=-1\)

\(\Rightarrow-a=b+c+d\Rightarrow a+b+c+d=0\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\a+c=-\left(b+d\right)\\a+d=-\left(b+c\right)\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{-\left(c+d\right)}{c+d}+\dfrac{b+c}{-\left(b+c\right)}+\dfrac{c+d}{-\left(c+d\right)}+\dfrac{-\left(b+c\right)}{b+c}=-1+-1+-1+-1=-4\)

Vậy \(\left[{}\begin{matrix}P=4\\P=-4\end{matrix}\right.\)

3 tháng 1 2019

thak kiu bn nhaeoeo

5 tháng 11 2018

ta có \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\)

=> \(\left(\dfrac{a}{b+c+d}+1\right)=\left(\dfrac{b}{a+c+d}+1\right)=\left(\dfrac{c}{a+b+d}+1\right)=\left(\dfrac{d}{a+b+c}+1\right)\)

(=) \(\dfrac{a+b+c+d}{b+c+d}=\dfrac{a+b+c+d}{a+c+d}=\dfrac{a+b+c+d}{a+b+d}=\dfrac{a+b+c+d}{a+b+c}\)

*Nếu a+b+c+d=0

=> \(\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{matrix}\right.\)

=> M=(-1)+(-1)+(-1)+(-1)=(-4)

Nếu a+b+c+d\(\ne\)0

=> a=b=c=d

=> M=1+1+1+1=4

5 tháng 11 2018

Xét a+b+c+d=0

\(\Rightarrow\)a=-(b+c+d).Thay vào \(\dfrac{a}{b+c+d}\)ta có

\(\dfrac{-\left(b+c+d\right)}{b+c+d}\)=-1.Làm tương tự như thế ta có

M=-1+(-1)+(-1)+(-1)=-4

Xét a+b+c+d\(\ne\)0

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{b+c+d}\)=\(\dfrac{b}{a+c+d}\)=\(\dfrac{c}{a+b+d}\)=\(\dfrac{d}{b+c+a}\)

=\(\dfrac{a+b+c+d}{2\cdot\left(a+b+c+d\right)}\)=\(\dfrac{1}{2}\)

\(\dfrac{a}{b+c+d}\)=\(\dfrac{1}{2}\)

\(\Rightarrow\)2a=b+c+d

\(\Rightarrow\)3a=a+b+c+d\(\left(1\right)\)

\(\dfrac{b}{a+c+d}\)=\(\dfrac{1}{2}\)

\(\Rightarrow\)2b= a+c+d

\(\Rightarrow\)3b=a+b+c+d\(\left(2\right)\)

\(\dfrac{c}{a+b+d}\)=\(\dfrac{1}{2}\)

\(\Rightarrow\)2c=a+b+d

\(\Rightarrow\)3c=a+b+c+d\(\left(3\right)\)

\(\dfrac{d}{b+c+a}\)=\(\dfrac{1}{2}\)

\(\Rightarrow\)2d=b+c+a

\(\Rightarrow\)3d=a+b+c+d\(\left(4\right)\)

Từ\(\left(1\right)\),\(\left(2\right)\),\(\left(3\right)\),\(\left(4\right)\)

\(\Rightarrow\)3a=3b=3c=3d

\(\Rightarrow\)a=b=c=d.Khi đó

M=\(\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}\)

=1+1+1+1

=4

Vậy...

Mình trình bày hơi xấu các bạn thông cảm1!

ha

25 tháng 4 2018
https://i.imgur.com/9OmkpIy.jpg
18 tháng 10 2017

Giải:

Ta có:

\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{b+c+a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{b+c+a}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b+c+d}=\dfrac{1}{3}\\\dfrac{b}{a+c+d}=\dfrac{1}{3}\\\dfrac{c}{a+b+d}=\dfrac{1}{3}\\\dfrac{d}{b+c+a}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=b+c+d\\3b=a+c+d\\3c=a+b+d\\3d=b+c+a\end{matrix}\right.\Leftrightarrow a=b=c=d\)

\(\Leftrightarrow M=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)

\(\Leftrightarrow M=1+1+1+1=4\)

Vậy \(M=4\).

Chúc bạn học tốt!

28 tháng 11 2017

Ta có

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

\(\Rightarrow\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)

\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

Trường hợp thứ nhất \(a+b+c+d\ne0\Rightarrow a=b=c=d\)

\(\Rightarrow M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)

\(\Rightarrow M=1+1+1+1\)

\(\Rightarrow M=4\)

Trường hợp thứ hai\(a+b+c+d=0\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)

\(\Rightarrow M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)

\(\Rightarrow M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(\Rightarrow M=-4\)

Vậy \(M\in\left\{4;-4\right\}\)

5 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}=\dfrac{2a+b+c+d-a-2b-c-d}{a-b}=1\)

\(\Rightarrow\left\{{}\begin{matrix}-a=b+c+d\\-b=a+c+d\\-c=b+c+d\\-d=a+b+c\end{matrix}\right.\Rightarrow a=b=c=d\)

\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)

\(\Rightarrow M=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}\)

\(\Rightarrow M=1+1+1+1\)

\(\Rightarrow M=4\)

Vậy .......

Chúc bạn học tốt!

5 tháng 4 2018

Thiếu trường hợp r bn khi a + b + c + d = 0 thì M = -4

bn phải xét a + b + c + d = 0 và a + b + c + d ≠ 0 khi đó mới đc dùng tính chất dãy tỉ số bằng nhau nha

khi a + b + c + d = 0

⇒ a + b = -(c + d)

a + d = -(b + c)

\(\Rightarrow M=\dfrac{a+b}{-\left(a+b\right)}+\dfrac{-\left(a+d\right)}{a+d}+\dfrac{-\left(a+b\right)}{a+b}+\dfrac{a+d}{-\left(a+d\right)}\)\(\Rightarrow M=-4\)

26 tháng 11 2017

Theo đề bài, ta có:

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

\(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)

\(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\) vì a,b,c,d khác 0

\(\Rightarrow a=b=c=d\)

\(\Rightarrow M=1+1+1+1=4\)