K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề đúng: Cho a,b,c thỏa mãn a+b+c>0; ab+bc+ac>0; abc>0. Chứng minh a,b,c>0

Vì abc>0 nên có ít nhất 1 số lớn hơn 0

Vai trò của a, b, c như nhau nên chọn a>0

TH1: b<0;c<0 

\(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\)

\(\Rightarrow b^2+2bc+c^2< -ab-ac\)

\(\Rightarrow b^2+bc+c^2< -\left(ab+bc+ca\right)\)(vô lí)

TH2: b>0, c>0 thì a>0( luôn đúng)

Vậy a, b, c >0

1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.4. Chứng minh rằng :...
Đọc tiếp

1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.

2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.

3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.

4. Chứng minh rằng : Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác.

5. Cho a, b, c dương nhỏ hơn 1. Chứng minh rằng ít nhất một trong ba bất đẳng thức sau sai

a( 1 - b) > 1/4 ; b( 1- c) > 1/4 ; c( 1 - a ) > 1/4 

6. Chứng minh rằng \(\sqrt{ }\)2 là số vô tỉ

7. Cho các số a, b, c thỏa mãn các điều kiện: 

{ a+ b+ c> 0             (1)

{ ab + bc + ca > 0    (2)       

{ abc > 0                    ( 3)

CMR : cả ba số a, b, c đều dương

8. Chứng minh bằng phản chứng định lí sau : "Nếu tam giác ABC có các đường phân giác trong BE, CF bằng nhau, thì tam giác ABC cân".

9. Cho 7 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 100. CMR luôn tìm được 3 đoạn để có thể ghép thành 1 tam giác.

2
11 tháng 7 2018

Này là toán lớp 7

11 tháng 7 2018

Lớp 10 đấy

9 tháng 7 2019

\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)=> \(a+b+c=\frac{ab+bc+ac}{abc}=ab+bc+ac\)

Ta có \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(abc-1\right)+a+b+c-ab-bc-ac=0\)

=> có ít nhất 1 trong 3 số a,b,c bằng 1

Vậy có ít nhất 1 trong 3 số a,b,c bằng 1

14 tháng 3 2017

ta có: \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow a+b+c=\frac{ab+bc+ca}{abc}=ab+bc+ca\)

\(\Leftrightarrow a+b+c-ab-bc-ca=0\)

\(\Leftrightarrow abc-ab-bc-ca+a+b+c-1=0\)(vì abc=1)

tự phân tích sẽ ra là \(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

suy ra một trong 3 số =1

8 tháng 1 2022

Từ a+b+c=0 => b+c=-a 

Theo đề ra ta có a+ b3 + c= 0 

=> a3 + (b+c)(b2 - bc + c2 )=0 

<=> a3- a[(b + c )2 -3bc]= 0 

<=> a3- [( -a )2 - 3bc] = 0 

<=> a3 -  a3 +3bc = 0 

<=> 3bc= 0 

<=> a =0 hoặc b=0 hoặc c=0 ( đpcm) 

cho mik điểm nha bạn ơiii

 

7 tháng 10 2015

Thay 1 = abc ta có: \(a+b+c=\frac{abc}{a}+\frac{abc}{b}+\frac{abc}{c}\)

<=> a + b + c = bc + ac + ab

<=> (a - ac) + (b - bc) + (c - ab) = 0 

<=> a(1 - c) + b(1 - c) + (c - \(\frac{1}{c}\)) = 0 

<=> ca(1 - c) + cb(1 - c) + (c - 1)(c + 1) = 0 

<=> (1 - c)(ca + cb - c - 1) = 0 

<=> (1 - c)[c(a -1) + (cb - abc)]= 0 

<=> (1 - c)[c(a - 1) + cb(1 - a)]= 0 

<=> (1 - c)(a - 1)(c - cb) = 0

<=> (1 - c)(a - 1)(1 - b).c = 0 <=> a = 1 hoặc b = 1 hoặc c = 1

Vậy.... 

7 tháng 10 2015

http://olm.vn/hoi-dap/question/179947.html

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

13 tháng 1 2019

biến đổi tương đương đưa về (a-1)(b-1)(c-1)=0

13 tháng 1 2019

Ta có : \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow a+b+c=\frac{ab+bc+ac}{abc}\)

\(\Leftrightarrow a+b+c=ab+bc+ac\left(abc=1\right)\)

\(\Leftrightarrow1+a+b+c-ab-bc-ac-1=0\)

\(\Leftrightarrow abc+a+b+c-ab-bc-ac-1=0\)

\(\Leftrightarrow ab\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)+c-1=0\)

\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

\(\Leftrightarrow\)a = 1 hoặc b = 1 hoặc c = 1

=> Đpcm